- 无标题文档
查看论文信息

中文题名:

 

牵制平衡算法及其在二次多背包问题中的应用研究

    

姓名:

 滕红玺    

学号:

 1049722002214    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0802Z1    

学科名称:

 工学 - 机械工程 - 工业工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 工业工程    

研究方向:

 优化算法设计    

第一导师姓名:

 罗亚波    

第一导师院系:

 机电工程学院    

完成日期:

 2023-03-23    

答辩日期:

 2023-05-13    

中文关键词:

 

仿生算法 ; 生态平衡机制 ; 二次多背包问题 ; NP-hard 问题 ; 元启发式算法

    

中文摘要:

二次多背包问题(Quadratic Multiple Knapsack Problem, QMKP)是经典0-1背包问题的一类复杂变体,也是典型的NP-hard问题,对于人力资源调度、生产排程计划、设施选址规划等现实问题的求解具有重要理论和应用价值。它结合了二次背包问题和多背包问题的特性,将各物品间的联合价值与多个背包相融合,增加了问题的耦合度,也使得可行解数量猛增,导致求解难度大幅上升,对求解算法提出了很高的要求。

仿生算法是仿生学在优化算法领域的应用成果,在求解复杂优化问题方面表现出了显著的优越性。通过模拟自然界的生态平衡机制,提出了一种新型仿生算法——牵制平衡算法。为验证牵制平衡算法在求解资源配置类问题方面的优越性与求解二次多背包问题及其现实扩展问题的有效性和竞争力,本文使用牵制平衡算法对工程设计问题、基准测试函数和0-1背包问题标杆算例进行仿真测试并将所得结果与文献记录的优化算法进行对比分析;针对二次多背包问题特征与难点,提出了牵制平衡与差分进化混合算法,并对大量标杆算例进行了仿真测试和横向纵向对比分析;在案例研究中,针对二次多背包问题的现实应用——多回收中心逆向物流路径规划问题,提出了牵制平衡与差分进化嵌套混合算法,并设计了与其他优化算法的对比试验。

本文研究内容与成果如下:

(1)受到自然界生态平衡机制的启发,提出了一种新型仿生算法——牵制平衡算法,算法以种群个数对应设计变量的维度,以种群规模对应设计变量的值,以物种间的牵制关系为优化驱动力,以系统达到稳态平衡为优化目标,构造了自成长函数、牵制函数和迭代机制。通过对其进行实验角度的收敛性测试和算法机制测试以及数学角度的收敛性分析和复杂度分析,验证了算法的可行性。

(2)为验证牵制平衡算法对于连续型和离散型资源配置问题的求解性能,使用本算法对工程设计问题、基准测试函数、0-1背包问题标杆算例进行仿真实验,并将所得结果与国内外文献所记录其他优化算法进行对比分析,表明牵制平衡算法在求解资源配置类问题的优越性。

(3)为扩展牵制平衡算法的应用范围、扩充二次多背包问题的求解方法,提出了牵制平衡与差分进化混合算法用于复杂资源配置问题——二次多背包问题的求解,以HJ标杆数据集的180个算例为测试对象,通过横向对比验证了混合算法较于基础算法性能的显著提升,通过纵向对比分析验证了混合算法相较于文献中其他优化算法的竞争力和有效性。

(4)在案例研究中,研究多回收中心逆向物流路径规划问题与二次多背包问题的映射关系,将该问题作为二次多背包问题在物流领域的现实应用,对问题特征和求解难点进行深入分析,构建了相应数学模型,并提出了牵制平衡与差分进化嵌套混合算法对其进行求解,结果显示了所提方法求解复杂现实优化问题的实用性和优越性,扩展了牵制平衡算法与其他优化算法的结合形式,也为多回收中心逆向物流路径规划问题的求解提供了新思路。

参考文献:

[1] 王凌. 智能优化算法及其应用[M]. 北京: 清华大学出版社, 2001.

[2] Sarac T, Sipahioglu A. Generalized quadratic multiple knapsack problem and two solution approaches[J]. Computers & Operations Research, 2014, (43): 78-89.

[3] Bergman D. An Exact algorithm for the quadratic multiknapsack problem with an application to event seating[J]. INFORMS Journal on Computing, 2019, 31(3): 477- 492.

[4] 秦进. 二次多背包问题及其扩展问题的启发式算法研究[D]. 华中科技大学, 2017.

[5] Rhys J. A selection problem of shared fixed costs and network flows[J]. Management Science, 1970, 7(3): 200-207.

[6] Johnson E L. Min-cut clustering[J]. Mathematical Programming, 1993, 62(1): 133-151.

[7] Petoukhov S V, Svirin V I, Khazina L V. Bionics of spiral structures[J]. Journal of Machinery Manufacture and Reliability, 2015, 44(3): 249-253.

[8] Sachsenmeier P. Industry 5.0-The relevance and implications of bionics and synthetic biology[J]. Engineering, 2016, 2(2): 225-229.

[9] Luo Y, Hao H. An original bionic algorithm for batch scheduling of traditional chinese medicine extraction workshop: simulated population growth blocked algorithm[J]. Computers and Industrial Engineering, 2022, 170(August).

[10] Wang X, Li Z, Kang H, et al. Medical image segmentation using PCNN based on multi-feature grey wolf optimizer bionic algorithm[J]. Journal of Bionic Engineering, 2021, 18(3): 711-720.

[11] Deliktas D, Urhan M. Proposal of genetic algorithm approach for solving single machine scheduling problem under learning effect[C]. proceedings of the International Conference on Intelligent and Fuzzy Systems, INFUS 2020, Istanbul, Turkey, 2021.

[12] Wang Y, Shi L, Dang Y, et al. Application of the headstock of CNC boring machine for tractor engine cylinder block based on multi-objective genetic algorithm[J]. Applied Engineering in Agriculture, 2021, 37(2): 343-349.

[13] Luo Y. Nested optimization method combining complex method and ant colony optimization to solve JSSP with complex associated processes[J]. Journal of Intelligent Manufacturing, 2017, 28(8): 1801-1815.

[14] Tian H. Research on robot optimal path planning method based on improved ant colony algorithm[J]. International Journal of Computing Science and Mathematics, 2021, 13(1): 80-92.

[15] Bewoor L A, Chandra P V, Sapkal S U. Evolutionary hybrid particle swarm optimization algorithm for solving NP-hard no-wait flow shop scheduling problems[J]. Algorithms, 2017, 10(4).

[16] Zhang L, Zhang Y, Li Y. Mobile robot path planning based on improved localized particle swarm optimization[J]. IEEE Sensors Journal, 2021, 21(5): 6962-6972.

[17] Zhao Z, Wang J, Hou X, et al. Viscosity prediction of rubberized Asphalt-Rejuvenated recycled Asphalt pavement binders using Artificial Neural Network approach[J]. Journal of Materials in Civil Engineering, 2021, 33(5).

[18] Mabboux J, Steinwendner J. Contactless temperature measuring with low-cost embedded device using deep learning[C]. proceedings of the 25th KES International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Szczecin, Poland, 2021.

[19] 唐红涛, 陈荣, 秦红斌. 基于改进遗传算法的铸造造型任务批调度模型[J]. 工业工程与管理, 2019, 24(05): 112-119.

[20] 史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J]. 农业机械学报, 2014, 45(06): 53-57.

[21] 张广大, 任清华, 樊志凯. 基于人工神经网络的联合中继和干扰选择策略研究 [J]. 电子测量与仪器学报, 2021, 35(07): 20-29.

[22] Poole D, Mackworth A, Goebel R. Computational Intelligence: A Logical Approach[M]. Oxford: Oxford University Press, 1997.

[23] 张军, 詹志辉, 陈伟能, 等. 计算智能[M]. 北京: 清华大学出版社, 2009.

[24] Banzhaf W, Foster J. Biological applications of genetic and evolutionary computation[J]. Genetic Programming and Evolvable Machines, 2004, 5(2): 119-241.

[25] 姜允志. 若干仿生算法的理论及其在函数优化和图像多阈值分割中的应用[D]. 华南理工大学, 2012.

[26] 徐宗本, 张讲社, 郑亚林. 计算智能中的仿生学[M]. 北京: 科学出版社, 2003.

[27] McCullonch W S, Pitts W A. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 1943, 5(4): 115-133.

[28] Holland J H. Adaptation in Natural and Artificial Systems[M]. Michigan U.S.: the university of Michigan Press, 1975.

[29] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by Ant Colonies[C]. proceedings of the ECAL'91, European Conference on Artificial Life, Paris, France, 1991.

[30] Eberhart R K J. A New Optimizer using particle swarm theory[C]. Proceding of the Sixth International Symposium on Micro Machine and Human Science. Nagoya Japan. 1995: 39-43.

[31] Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE international Conference on Neural Networks. Perth, Australia. 1995: 1942-1948.

[32] Passino K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEEControl Systems Magazine (So272-1708), 2002, 22(3): 52-67.

[33] 李晓磊, 钱积新. 基于分解协调的人工鱼群优化算法研究[J]. 电路与系统学报, 2002, 8(1): 1-6.

[34] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式:鱼群算法[J]. 系统工程理论与实践, 2002, 11: 32-38.

[35] Karaboga D. An idea based on Honey Bee Swarm for numerical optimization[R]. Kayseri: Computer Engineering Department, Erciyes University, 2005.

[36] Yang X S, Deb S. Engineering optimization by Cuckoo Search[J]. International Journal of Mathematical Modeling and Numerical Optimization, 2010, 1(4): 330-343.

[37] Rojas-Gualdron R, Smarandache F. Neutrosophic genetic algorithm for solving the vehicle routing problem with uncertain travel times[J]. Neutrosophic Sets and Systems, 2022, 52: 400-409.

[38] Ahmed Z H, Al-Otaibi N, Al-Tameem A, et al. Genetic crossover operators for the capacitated vehicle routing problem[J]. Computers, Materials and Continua, 2023, 74(1): 1575-1605.

[39] 邓敏, 伍志高, 姚志强, 等. 带精英集并行遗传算法的无人机干扰资源调度[J]. 电子与信息学报, 2022, 44(06): 2158-2165.

[40] Zhong C, Yang G. An improved ant colony algorithm for virtual resource scheduling in cloud computing methods to improve the performance of virtual resource scheduling[J]. International Journal of Advanced Computer Science and Applications, 2023, 14(1): 249-261.

[41] Raman D, Nagalingam S V, Gurd B W. A genetic algorithm and queuing theory based methodology for facilities layout problem[J]. International Journal of Production Research, 2009, 47(20): 5611-5635.

[42] Turk A, Gurgen S, Ozkok M, et al. A comprehensive investigation into the performance of genetic algorithm for effective shipyard topological layout[J]. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2022, 236(3): 726-740.

[43] Hiley A, Julstrom B A. The quadratic multiple knapsack problem and three heuristic approaches to it[C]. 8th Annual Genetic and Evolutionary Computation Conference 2006. 2006: 547-552.

[44] Galli L, Martello S, Rey C, et al. Lagrangian matheuristics for the quadratic multiple knapsack problem[J]. Discrete Applied Mathematics, 2022. Article in Press.

[45] Krzysztof F. A Branch-and-Bound algorithm for the quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2022, 298(1): 89-98.

[46] Méziane A, Oussama G, Mhand H. Branch and solve strategies-based algorithm for the quadratic multiple knapsack problem[J]. Journal of the Operational Research Society, 2022, 73(3): 540-557.

[47] Hifi M, Mohamed Youssouf A, Saadi T, et al. A Cooperative Swarm Optimization-Based Algorithm for the Quadratic Multiple Knapsack Problem[C]. proceedings of the 7th International Conference on Control, Decision and Information Technologies, CoDIT 2020, Prague, Czech republic, 2020.

[48] Zhao X, Dong Y, Tang L. A contribution-guided discrete differential evolution algorithm for the quadratic multiple knapsack problem[C]. proceedings of the 2016 IEEE Congress on Evolutionary Computation, , Vancouver, BC, Canada, 2016.

[49] Peng B, Liu M, Lu Z, et al. An ejection chain approach for the quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2016, 253(2): 328-336.

[50] Chen Y, Hao J-K, Glover F. An evolutionary path relinking approach for the quadratic multiple knapsack problem[J]. Knowledge-Based Systems, 2016, 92: 23-34.

[51] Qian J, Wang B-H, Zheng J-G, et al. A quantum evolutionary algorithm for quadratic multiple knapsack problem[J]. Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38(8): 1518-1529.

[52] Zhou Q, Hao J-K, Wu Q. A hybrid evolutionary search for the generalized quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2022, 296(3): 788-803.

[53] Aider M, Gacem O, Hifi M. A hybrid population-based algorithm for the bi-objective quadratic multiple knapsack problem[J]. Expert Systems with Applications, 2022, 191.

[54] Song B, Li Y, Chen Y, et al. A repair-based approach for stochastic quadratic multiple knapsack problem[J]. Knowledge-Based Systems, 2018, 145: 145-155.

[55] Bäck T. Evolutionary algorithms in theory and practic[M]. New York: Oxford University Press, 1994.

[56] 俸皓, 罗蕾, 王勇, 等. 无线传感网中基于时变多旅行商和遗传算法的多目标数据采集策略[J]. 通信学报, 2017, 38(03): 112-123.

[57] 汪逸晖, 高亮. 乌鸦搜索算法的改进及其在工程约束优化问题中的应用[J]. 计算机集成制造系统, 2021, 27(07): 1871-1883.

[58] Gálvez J, Cuevas E, Hinojosa S, et al. A reactive model based on neighborhood consensus for continuous optimization[J]. Expert Systems with Applications, 2019, 121: 115-141.

[59] Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.

[60] Sadollah A, Bahreininejad A, Eskandar H, et al. Mine blast algorithm:a new population-based algorithm for solving constrained engineering optimization problems[J]. Applied Soft Computing, 2013, 13(5): 2592-2612.

[61] Ray T, Liew K M. Society and Civilization:An optimization-algorithm based on the simulation of social behavior[J]. IEEE Transactions Evolutionary Computations, 2003, 7(4): 386-396.

[62] Rao S. Engineering Optimization:Theory and Practice[M]. 3rd ed. Chichester: John Wiley & Sons, 1996.

[63] Gandomi A H, Yang X-S, Alavi A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35.

[64] Hsu Y-L, Liu T-C. Developing A fuzzy proportional-derivative controller optimization engine for engineering design optimization problems[J]. Engineering Optimization, 2007, 39(6): 679-700.

[65] 臧睿, 李辉辉. 基于标准萤火虫算法的改进与仿真应用[J]. 计算机科学, 2016, 43(S2): 113- 116+ 132.

[66] Yi W, Zhou Y, Gao L, et al. Engineering design optimization using an improved local search based epsilon differential evolution algorithm[J]. Journal of Intelligent Manufacturing, 2018, 29(7): 1559-1580.

[67] Han J, Yang C, Zhou X, et al. A two-stage state transition algorithm for constrained engineering optimization problems[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 522-534.

[68] Kohli M, Arora S. Chaotic grey wolf optimization algorithm for constrained optimization problems[J]. Journal of Computational Design and Engineering, 2018, 5(4): 458-472.

[69] 吴建军,甄彤,祝玉华. 一种面向储粮微环境的GPSO改进算法研究[J]. 中国粮油学报,2015,30(12):102-105+113.

[70] 赵苗,高永琪,陈俊丞. 全振荡型入侵野草优化算法的仿真研究[J]. 计算机仿真,2019,36(11):255-259.

[71] 聂文亮,蔡黎,邱刚,李春莉. 带密度加权的自适应遗传算法[J]. 计算机系统应用, 2018, 27(01):137-142.

[72] 吴虎胜, 张凤鸣, 战仁军, 等. 求解0-1背包问题的二进制狼群算法[J]. 系统工程与电子技术, 2014, 36(08): 1660-1667.

[73] 刘生建, 杨艳, 周永权. 求解0-1背包问题的二进制狮群算法[J]. 计算机工程与科学, 2019, 41(11): 2079-2087.

[74] Kulkarni A J, Shabir H. Solving 0–1 knapsack problem using cohort intelligence algorithm[J]. International Journal of Machine Learning and Cybernetics, 2016,7(3): 427-441.

[75] Layeb A. A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems[J]. Journal of Computational and Applied Mathematics, 2013,253(Complete): 14-25.

[76] Zhou Y, Li L, Ma M. A Complex-valued Encoding Bat Algorithm for Solving 0-1 Knapsack Problem[J]. Neural Processing Letters, 2016, 44(2): 407-430.

[77] 孔祥勇, 高立群, 欧阳海滨, 等. 无参数变异的二进制差分进化算法[J]. 东北大学学报(自然科学版), 2014, 35(04): 484-488.

[78] Fleszar K. A branch-and-bound algorithm for the quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2022, 298(1): 89-98.

[79] Galli L, Martello S, Rey C, et al. Polynomial-size formulations and relaxations for the quadratic multiple knapsack problem[J]. European Journal of Operational Research, 2021, 291(3): 871-882.

[80] Fleischmann M, Bloemhof-Ruwaard J M, Dekker R, et al. Quantitative models for reverse logistics: a review[J]. European Journal of Operational Research, 1997, 103(1): 1-17.

[81] 胡悦, 罗亚波, 李霞. 基于混合算法的不确定环境下逆向物流网络设计研究[J]. 工业工程与管理, 2018, 23(01): 90-95.

[82] Wang Y, Zhang J, Assogba K, et al. Collaboration and transportation resource sharing in multiple centers vehicle routing optimization with delivery and pickup[J]. Knowledge-Based Systems, 2018, 160: 296-310.

[83] Lyu X, Wang N, Zhen Y, et al. Shipper collaboration in forward and reverse logistics[J]. Journal of Industrial Management Optimization, 2017, 13(5): 1-37.

[84] Avci M G, Topaloglu S. A hybrid metaheuristic algorithm for heterogeneous vehicle routing problem with simultaneous pickup and delivery[J]. Expert Systems with Applications, 2016, 53(Jul.): 160-171.

[85] 王勇, 左佳昕, 蒋琼, 等. 基于产品回收定价的逆向物流车辆路径优化问题[J]. 系统管理学报, 2022, 31(02): 199-216.

中图分类号:

 TP18    

条码号:

 002000070916    

馆藏号:

 TD10058251    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式