- 无标题文档
查看论文信息

中文题名:

 

混合数据驱动的层积式光纤光栅六维力传感器优化与应用

    

姓名:

 陈发银    

学号:

 1049722002181    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080400    

学科名称:

 工学 - 仪器科学与技术    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 仪器科学与技术    

研究方向:

 机器人力感知    

第一导师姓名:

 谭跃刚    

第一导师院系:

 机电工程学院    

第二导师姓名:

 李天梁    

完成日期:

 2023-03-23    

答辩日期:

 2023-05-19    

中文关键词:

 

手术机器人光纤光栅六维力传感器多目标优化重力补偿

    

中文摘要:

骨科手术机器人具有精度高、稳定性好、抗疲劳、可重复性好等诸多优点,可有效克服传统手术对医生经验依赖性强、操作稳定性差等缺点,在骨科疾病治疗等场景中具有广阔的应用前景。然而,目前的手术机器人缺乏力感知与反馈,给医生带来了极大的操作挑战及心理负担,降低了手术质量及安全性。六维力传感器可测量器械与组织交互过程中的多维力/力矩信息,是实现手术机器人力反馈的关键。然而目前包括商用六维力传感器在内的电类传感器生物兼容性差,且难以适应手术室中的电磁环境。此外,六维力传感器往往结构复杂,难以准确建立其理论模型;简单的尺寸组合也难以满足多性能要求,加之弹性体加工误差对传感性能的扰动,给面向骨科手术机器人的六维力传感器研制带来了极大挑战。鉴于此,本文的主要研究内容有:

(1)针对骨科手术机器人末端交互力感知,研究光纤光栅六维力动态感知方法,设计了层积式六维力传感构型,结合光纤悬置配置方法,提出了一种新型光纤光栅六维力传感器。

(2)为建立传感器的理论模型,提出了混合数据驱动的建模方法。通过实验方法获取ABS试件的弹性模量,基于此采用有限元仿真获取不同尺寸参数下传感器对于单位载荷的响应,利用响应面法建立了传感器的理论模型。

(3)为实现传感器多性能优化,结合基于区间的不确定多目标优化方法,提出了考虑加工误差的传感器多目标优化方法,构建了虑及维间耦合、力/力矩各向同性及公差水平的传感器多目标优化模型,通过智能算法求解模型并确定传感器最优尺寸配置,优化后传感性能提升30%以上。

(4)提出偏心加载的力矩分量标定方法,开展六维力传感器的动静态特性研究,构建了传感器的实际解耦矩阵,分析了传感器动静态特性,非线性误差小于4.31%,维间耦合误差小于11.18%,谐振频率大于232Hz,工作频带为0-77.33Hz;开展了传感器的应用研究,建立了末端操作器重力补偿模型,通过模拟试验验证了所研制传感器的实际应用效果,骨组织切削力测量误差小于7.4%。

参考文献:

[1] 韩晓光, 刘亚军, 范明星, 等. 骨科手术机器人技术发展及临床应用[J]. 科技导报, 2017, 35(10): 19-25.

[2] Torun Y, Pazarcı Ö, Öztürk A. Current approaches to bone-drilling procedures with orthopedic drills [J]. Cyprus J Med Sci, 2020, 5(1): 93-98.

[3] 王华铮, 刘鹏, 宗路杰, 等. 骨科手术机器人的研究进展及展望[J]. 机器人外科学杂志(中英文), 2022, 3(1): 55-61.

[4] Xu Cheng, Lin Li, Aung Z M, et al. A Preliminary study on animal experiments of robot-assisted craniotomy[J]. World Neurosurgery, 2021, 149: 748-757.

[5] Kim U, Kim Y B, Seok D-Y, et al. S-surge: A portable surgical robot based on a novel mechanism with force-sensing capability for robotic surgery[M]. Handbook of Robotic and Image-Guided Surgery. Elsevier. 2020: 265-283.

[6] Cheng Xu, Li Lin, Mar Aung Z, et al. Research on spatial motion safety constraints and cooperative control of robot‐assisted craniotomy: Beagle model experiment verification[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17(2): 2231.

[7] Duan Xingguang, Tian Huanyu, Li Changsheng, et al. Virtual-fixture based drilling control for robot-assisted craniotomy: Learning from demonstration[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2327-2334.

[8] 郑长万, 陈义国, 匡绍龙, 等. 骨科手术机器人的发展现状分析[J]. 中华骨与关节外科杂志, 2021, 14(10): 872-877.

[9] 许梓健, 顾洪生, 蒯声政, 等. 骨科手术机器人的临床应用与进展[J]. 机器人外科学杂志(中英文), 2022, 3(5): 376-387.

[10] Torun Y, Öztürk A. A new breakthrough detection method for bone drilling in robotic orthopedic surgery with closed-loop control approach[J]. Annals of Biomedical Engineering, 2020, 48(4): 1218-1229.

[11] 郭硕, 郭征. 骨科手术机器人研究进展[J]. 武警医学, 2018, 29(10): 987-990.

[12] Misiri J, Kusumoto F, Goldschlager N. Electromagnetic interference and implanted cardiac devices: the medical environment (part II)[J]. Clinical cardiology, 2012, 35(6): 321-328.

[13] Tang Zhongxin, Wang Shuxin, Li Ming, et al. Development of a distal tri-axial force sensor for minimally invasive surgical palpation[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(1): 145-155.

[14] Pu Minghui, Liang Quan, Luo Qi, et al. Design and optimization of a novel capacitive six-axis force/torque sensor based on sensitivity isotropy[J]. Measurement, 2022, 203: 111868.

[15] Yao Lei, Gao Qingguang, Zhang Dailin, et al. An integrated compensation method for the force disturbance of a six-axis force sensor in complex manufacturing scenarios [J]. Sensors, 2021, 21(14): 4706.

[16] Yuan Chao, Luo LuPing, Yuan Quan, et al. Development and evaluation of a compact 6-axis force/moment sensor with a serial structure for the humanoid robot foot [J]. Measurement, 2015, 70: 110-122.

[17] 陈丹凤. 面向空间作业的多维力传感器设计及标定研究[D]. 南京: 东南大学, 2015.

[18] 孙永军. 空间机械臂六维力/力矩传感器及其在线标定的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

[19] Payo I, Adánez J M, Rosa D R, et al. Six-axis column-type force and moment sensor for robotic applications[J]. IEEE Sensors Journal, 2018, 18(17): 6996-7004.

[20] 韩康, 陈立恒, 李行, 等. 高灵敏度大量程六维力传感器设计[J]. 仪器仪表学报, 2019, 40(9): 61-69.

[21] Kebede G A, Ahmad A R, Lee S-C, et al. Decoupled six-axis force–moment sensor with a novel strain gauge arrangement and error reduction techniques[J]. Sensors, 2019, 19(13): 3012.

[22] Lin C-Y, Ahmad A R, Kebede G A. Novel mechanically fully decoupled six-axis force-moment sensor[J]. Sensors, 2020, 20(2): 395.

[23] Schaler E W, Wisnowski J, Iwashita Y, et al. Two-stage calibration of a 6-axis force-torque sensor for robust operation in the Mars 2020 robot arm[J]. Advanced Robotics, 2021, 35(21-22): 1347-1358.

[24] Song Aiguo, Fu Liyue. Multi-dimensional force sensor for haptic interaction: A review[J]. Virtual Reality & Intelligent Hardware, 2019, 1(2): 121-135.

[25] Brookhuis R A, Sanders R G, Ma K, et al. Miniature large range multi-axis force-torque sensor for biomechanical applications[J]. Journal of Micromechanics and Microengineering, 2015, 25(2): 025012.

[26] Kim U, Lee D-H, Kim Y B, et al. A novel six-axis force/torque sensor for robotic applications[J]. IEEE/ASME Transactions on Mechatronics, 2016, 22(3): 1381-1391.

[27] Liu Tao. Design of a three-dimensional capacitor-based six-axis force sensor for human-robot interaction[J]. Sensors and Actuators A: Physical, 2021, 331: 112939.

[28] 蒲明辉, 胡世通, 罗祺, 等. 两种电容效应的六维力传感器结构设计及解耦[J]. 机械设计与制造, 2022, 378(8): 65-69.

[29] 姚起宏, 王奉阳, 黄伟, 等. 一种新型电容式六维力/力矩传感器设计及解耦分析[J]. 装备制造技术, 2022, (1): 11-14.

[30] Luo Qi, Liang Quan, Zhang Jinhao, et al. Parameters Optimization for a Capacitive Six-Axis Force/Torque Sensor by Using Analytical Method[J]. IEEE Sensors Journal, 2022, 22(22): 21735-21744.

[31] Jia Zhenyuan, Lin Sheng, Liu Wei. Performance index analysis of a six-axis heavy force sensor based on the Stewart platform[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(6): 1359-1368.

[32] Jia ZhenYuan, Lin Sheng, Liu Wei. Measurement method of six-axis load sharing based on the Stewart platform[J]. Measurement, 2010, 43(3): 329-335.

[33] 徐兴盛, 李映君, 王桂从, 等. 轮辐结构压电式六维力传感器设计[J]. 光学精密工程, 2020, 28(12): 2655-2664.

[34] Li Yingjun, Yang Cong, Wang Guicong, et al. Research on the parallel load sharing principle of a novel self-decoupled piezoelectric six-dimensional force sensor[J]. ISA transactions, 2017, 70: 447-457.

[35] Li Yingjun, Wang Guicong, Yang Xue, et al. Research on static decoupling algorithm for piezoelectric six axis force/torque sensor based on LSSVR fusion algorithm[J]. Mechanical Systems and Signal Processing, 2018, 110: 509-520.

[36] Liu Jun, Zhang Le, Fu Ze, et al. Dynamic characteristic analysis of planar piezoelectric six-axis force/torque sensor; proceedings of the 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)[C]. Piscataway, USA: IEEE, 2018: 140-145.

[37] 郇正泽. 小尺寸大量程高精度压电式六维力传感器的研究[D]. 济南: 济南大学, 2020.

[38] Benfield D, Yue S, Lou E, et al. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery[J]. Journal of Micromechanics and Microengineering, 2014, 24(8): 085008.

[39] Nakai A, Morishita Y, Matsumoto K, et al. 6-axis force-torque sensor chip composed of 16 piezoresistive beams; proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)[C]. Piscataway, USA: IEEE, 2015: 730-731.

[40] 何玉泽. 磁致压阻式六维力传感器性能优化及应用研究[D]. 重庆: 重庆理工大学, 2022.

[41] Al-Mai O, Ahmadi M, Albert J. Design, development and calibration of a lightweight, compliant six-axis optical force/torque sensor[J]. IEEE Sensors Journal, 2018, 18(17): 7005-7014.

[42] Hosseinabadi A H H, Salcudean S E. UltraLow Noise, High Bandwidth, Low Latency, No Overload 6-Axis Optical Force Sensor[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2581-2592.

[43] Hosseinabadi A H H, Black D G, Salcudean S E. Ultra Low-Noise FPGA-Based Six-Axis Optical Force–Torque Sensor: Hardware and Software[J]. IEEE Transactions on Industrial Electronics, 2020, 68(10): 10207-10217.

[44] Müller M S, Hoffmann L, Christopher Buck T, et al. Fiber Bragg grating-based force-torque sensor with six degrees of freedom[J]. International Journal of Optomechatronics, 2009, 3(3): 201-214.

[45] Haslinger R, Leyendecker P, Seibold U. A fiberoptic force-torque-sensor for minimally invasive robotic surgery; proceedings of the 2013 IEEE international conference on robotics and automation[C]. Piscataway, USA: IEEE, 2013: 4390-4395.

[46] Kim C, Lee C-H. Development of a 6-DoF FBG force–moment sensor for a haptic interface with minimally invasive robotic surgery[J]. Journal of Mechanical Science and Technology, 2016, 30(8): 3705-3712.

[47] Xiong Li, Guo Yongxing, Jiang Guozhang, et al. Six-dimensional force/torque sensor based on fiber Bragg gratings with low coupling[J]. IEEE Transactions on Industrial Electronics, 2020, 68(5): 4079-4089.

[48] Wu Baoyuan, Luo Jianfei, Shen Fei, et al. Optimum design method of multi-axis force sensor integrated in humanoid robot foot system[J]. Measurement, 2011, 44(9): 1651-1660.

[49] 吴宝元, 申飞, 吴仲城. 应变式多维力传感器结构优化设计方法研究[J]. 传感技术学报, 2010, 23(10): 1412-1416.

[50] Wang Yingjian, Zuo Guokun, Chen Xiliang, et al. Strain analysis of six-axis force/torque sensors based on analytical method[J]. IEEE Sensors Journal, 2017, 17(14): 4394-4404.

[51] 闫志彪. 基于柔性机构的六维力传感器研制及解耦研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

[52] 孙玉香. 用于空间机械臂的力/力矩传感器关键技术研究[D]. 合肥: 中国科学技术大学, 2019.

[53] Wang Yu-Jen, Wu Li-Chi, Ke Jian-Dong, et al. Planar six-axis force and torque sensors[J]. IEEE Sensors Journal, 2021, 21(23): 26631-26641.

[54] Kang M K, Lee S, Kim J H. Shape optimization of a mechanically decoupled six-axis force/torque sensor[J]. Sensors & Actuators A Physical, 2014, 209: 41-51.

[55] Akbari H, Kazerooni A. Improving the coupling errors of a Maltese cross-beams type six-axis force/moment sensor using numerical shape-optimization technique[J]. Measurement, 2018, 126(0): 342-355.

[56] Ahmad A R, Wynn T, Lin C-Y. A comprehensive design of six-axis force/moment sensor[J]. Sensors, 2021, 21(13): 4498.

[57] 李化, 王志军, 贺静. 正交并联六维力传感器结构性能及参数优化[J]. 机械工程与自动化, 2018, (3): 35-37.

[58] 贾振元, 褚宏飞, 刘巍, 等. 基于Stewart结构六维大力传感器的性能分析及结构优化[J]. 仪器仪表学报, 2010, (2): 341-346.

[59] 王永立, 路懿. 分流式柔性铰六维力传感器刚度分析与结构优化[J]. 农业机械学报, 2019, 50(6): 419-426.

[60] 张韬, 肖心怡, 杨德华, 等. 基于各向同性的Stewart型六维力传感器的优化设计(英文)[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, v.37(S1): 106-112.

[61] 韩康. 空间容错六维力传感器设计及标定研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

[62] Leal-Junior A G, Rocha H R, Theodosiou A, et al. Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers[J]. IEEE Access, 2020, 8: 31983-31991.

[63] Ballo F, Gobbi M, Mastinu G, et al. Advances in force and moments measurements by an innovative six-axis load cell[J]. Experimental Mechanics, 2014, 54(4): 571-592.

[64] Huang Guanyu, Zhang Dan, Guo Sheng, et al. Design and optimization of a novel three-dimensional force sensor with parallel structure[J]. Sensors, 2018, 18(8): 2416.

[65] Jiang C, Xie H, Zhang Z, et al. A new interval optimization method considering tolerance design[J]. Engineering Optimization, 2015, 47(12): 1637-1650.

[66] 连宾宾. 一种五自由度并联机构的多目标优化设计方法研究[D]. 天津: 天津大学, 2017.

[67] Karmakar S, Bhunia A K. An efficient interval computing technique for bound-constrained uncertain optimization problems[J]. Optimization, 2014, 63(11): 1615-1636.

[68] 周亚军. 基于多维力传感器的机器人叶片磨抛力控制技术研究[D]. 武汉: 华中科技大学, 2017.

[69] 高培阳. 基于力传感器的工业机器人恒力磨抛系统研究[D]. 武汉: 华中科技大学, 2019.

[70] 刘岩, 武俊峰, 夏科睿, 等. 机械臂腕力传感器负载端重力补偿算法与仿真[J]. 哈尔滨理工大学学报, 2018, 23(2): 78-85.

[71] 王志军, 韩静如, 李占贤, 等. 机器人运动中六维力传感器的重力补偿研究[J]. 机械设计与制造, 2018, (7): 252-255.

[72] Chen Fan, Zhao Huan, Li Dingwei, et al. Robotic grinding of a blisk with two degrees of freedom contact force control[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 461-474.

[73] Yang Xuting, Li Fengming, Gao Rui, et al. Force perception of industrial robot based on multi-parameter coupled model; proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)[C]. Piscataway, USA: IEEE, 2019: 1676-1681.

[74] Su Hang, Yang Chenguang, Mdeihly H, et al. Neural network enhanced robot tool identification and calibration for bilateral teleoperation[J]. IEEE Access, 2019, 7: 122041-122051.

[75] Yu Yongqiang, Shi Ran, Lou Yunjiang. Bias estimation and gravity compensation for wrist-mounted force/torque sensor [J]. IEEE Sensors Journal, 2021, 22(18): 17625-17634.

[76] Wu Yaohui, Zhao Jiangbo, Wang Junzheng, et al. High-Precision Admittance Control of Mechanical Arm Based on Force Sensor Compensation; proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC)[C]. Piscataway, USA: IEEE, 2022: 5551-5556.

[77] 熊丽. 基于光纤光栅的手术机器人器械多维力测量方法研究[D]. 武汉: 武汉科技大学, 2020.

[78] Fajkus Marcel, Nedoma Jan, Martinek Radek, et al. MR Fully Compatible and Safe FBG Breathing Sensor: A Practical Solution for Respiratory Triggering[J]. IEEE Access, 2019, 7: 123013-123025.

中图分类号:

 TN253    

条码号:

 002000071217    

馆藏号:

 TD10058397    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式