- 无标题文档
查看论文信息

中文题名:

 

基于分布式光纤声学传感的油水两相测量方法研究

    

姓名:

 樊林玉    

学号:

 1049722002186    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080400    

学科名称:

 工学 - 仪器科学与技术    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 仪器科学与技术    

研究方向:

 光纤传感    

第一导师姓名:

 梁磊    

第一导师院系:

 机电工程学院    

完成日期:

 2023-05-24    

答辩日期:

 2023-05-19    

中文关键词:

 

分布式光纤声学传感 ; 油水两相 ; 缠绕光纤 ; 流量 ; 相含率

    

中文摘要:

为了实现油井开发的高效率开采、科学化经营与精细化管理,流量与含水率的准确测量非常关键,有助于更好的掌握产液剖面数据、评估油藏区储油量。目前,多相分离计量技术仍为国内油井采用的主流测量方法,依托于工艺结构复杂的多相传感器,其仪表设备占地较大,无法在井下安装实现,且受井下流体复杂多变的流态影响,其测量精度与实时性均难以满足需求。

分布式光纤声学传感技术集传感测量与信号传输功能于一体,光纤测量沿线振动信号用于计算流量与相含率,该方法被广泛用于国外高产量油井中多相流量的测量。然而,受井下安装环境限制,通常直接将光纤光缆沿油管套筒外壁直线布设,安装方便但对流量的测量精度低,尤其应用于国内小流量低产井时,因流量引起的有效振动信号几乎被“嘈杂”的井下环境噪声淹没,导致后期数据处理困难,甚至无法解析。针对上述问题,本文提出一种缠绕光纤两相流量传感结构,以缠绕方式代替直线布设方式来采集油管振动信号;然后对光纤缠绕参数进行理论计算,得出最优缠绕方式,从而提高管壁振动信号测量灵敏度,以及获取更准确的流体声波信号;最终进行油水两相流量实验,将管壁振动信号用于流量反演,流体声波信号用于含水率计算,验证了缠绕光纤传感结构对井下流量、含水率同时测量的可行性。本文的主要研究内容如下:

(1)对管道内油水两相混合流量与含水率测量理论进行研究。首先根据湍流强度理论得到压力波动与平均流量成正比,进一步分析充满湍流的管道横向振动、管壁动态应变分别与流体压力波动的关系,得到管壁振动信号标准差与管内流量之间呈二次线性关系。再基于线性模型计算得到湍流内声速与相含率之间的数学关系式,并结合多普勒频移推导了分布式光纤传感器测量声速的原理。其次对不同流速、含水率下的油水两相流体进行仿真,分析压力场情况,发现流体外表面压力受流速变化的影响大,受相含率变化的影响小,验证了由管壁振动信号测量两相混合流量的可行性。

(2)对分布式光纤声学传感(Distributed Acoustic Sensing,DAS)系统解调采集声波信号及管壁振动信号的方法进行研究。以缠绕在管壁上的光纤为研究目标,管壁受到均匀压力场作用时,对光纤的应变效应以及弹光效应进行定量分析,得到管壁压力场与缠绕在管壁上的光纤相位差之间呈一次线性关系。接着,对DAS系统进行幅频响应实验来测试DAS对振动信号的响应程度,测得有效频率范围达500Hz,光纤轴向拉伸量与DAS系统幅值之间关系系数为0.028rad/μm,为缠绕光纤结构的测量参数分析提供了理论支撑。

(3)提出了一种缠绕光纤两相流量传感结构,可同时测量油水两相的流量与含水率。首先进行缠绕方式研究,优化螺距、紧密缠绕圈数这两个参数,从而提高缠绕光纤对管壁动态应变的测量灵敏度,并使得声波的声速更易被测量,最终得到2-3 cm螺距、4-6圈紧密缠绕圈数为最优缠绕方式。然后选取了全紧密缠绕、全螺距缠绕以及最优参数下的半紧密半螺距缠绕,共三种缠绕方式,分析其缠绕特性与测量特性,证实了理论分析的可靠性与准确性。

(4)基于缠绕光纤传感结构进行油水两相流量实验测试,通过DAS解调得到的管壁振动信号与流体声波信号,流量测试范围为2-16 m3/h,含油率测试范围为10%-90%。流量测试结果表明,三种缠绕方式下均满足DAS幅值标准差与流量之间呈二次线性关系,且拟合度达90%以上;同时,在4-16 m3/h流量范围内,全紧密缠绕测量误差稳定为±5%以内,全螺距缠绕误差在±10%以内,最优缠绕方式下的误差在±6%以内。含水率测试结果表明,在含油率30%-90%,最优缠绕方式下的声速-含油率曲线与理论模型计算得到的参考曲线具有几乎相同的变化趋势,对两者进行一次线性拟合,拟合斜率为-374.1与-420.1。由此可得,缠绕光纤传感结构可同时完成油水两相流量、含水率两个参数的准确测量。

参考文献:

[1] Bikmukhametov T, Jäschke J. First principles and machine learning virtual flow metering: a literature review[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106487.

[2] Tsukagoshi K. Discovery of Phase-separated Multiphase Flows and Attempts at Academic and Technical Systematization[J]. Bunseki Kagaku, 2022, 71(1-2): 25-39.

[3] Liu C, Lin J Z. A Review on the Some Issues of Multiphase Flow with Self-Driven Particles[J]. Applied Sciences-Basel, 2021, 11(16).

[4] Zhao H F, Xu Y. Study on Numerical Simulation and Performance of the Secondary Throttle Choke Used in the Oil Field[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 712: 1201-1204.

[5] 刘月圆, 梁玉娇, 郑盟, 等. 新型均速管涡街流量传感器的测量特性研究[J]. 电子测量与仪器学报, 2022, 36: 8-10.

[6] Wang Y J, Li H Y, Liu X B, et al. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells[J]. Sensors, 2016, 16(10).

[7] Su Q, Deng X T, Liu Z X, et al. Phase fraction measurement of oil-gas-water three-phase flow with stratified gas by ultrasound technique[J]. Measurement Science and Technology, 2022, 33(7).

[8] Hossain M S, Abir M T, Alam M S, et al. An Algorithm to Image Individual Phase Fractions of Multiphase Flows Using Electrical Capacitance Tomography[J]. Ieee Sensors Journal, 2020, 20(24): 31.

[9] Hao H, Yan P, Hao B A, et al. Multiphase Measurement of Oil Production Using Fiber-Conductance Dual-Mode Sensor[J]. Ieee Sensors Journal, 2022, 22(13): 12796.

[10] Wrasse A N, Bertoldi D, Morales R E M, et al. Two-phase flow rate measurement using a capacitive sensor and a Venturi meter[C]//2017 IEEE SENSORS. IEEE, 2017: 1-3.

[11] Tang Z Y, Jin N D, Ren W K, et al. Measurement of LiquidLiquid Flows Using Turbine Flowmeter and Conductance Sensor With Multiheight Electrodes in Vertical Pipes[J]. Ieee Transactions on Instrumentation and Measurement, 2023, 72.

[12] Nour M A, Hussain M M. A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications[J]. Sensors, 2020, 20(14).

[13] Hansen L S, Pedersen S, Durdevic P. Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives[J]. Sensors, 2019, 19(9).

[14] Ravet F, Rochat E, Nikles M, et al. Challenges, requirements and advances for distributed fiber optic sensors in surf structures and subsea well monitoring[C]//International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2013, 55355

[15] Silva L C B, Segatto M E V, Castellani C E S. Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues[J]. Optical Fiber Technology, 2022, 74.

[16] Wang Q, Han L J, Fan X W, et al. Distributed fiber optic vibration sensor based on polarization fading model for gas pipeline leakage testing experiment[J]. Journal of Low Frequency Noise Vibration and Active Control, 2018, 37(3): 468.

[17] Raab T, Reinsch T, Cifuentes S R A, et al. Real-Time Well-Integrity Monitoring Using Fiber-Optic Distributed Acoustic Sensing[J]. Spe Journal, 2019, 24(5): 1997-2009.

[18] Lu P, Lalam N, Badar M, et al. Distributed optical fiber sensing: Review and perspective[J]. Applied Physics Reviews, 2019, 6(4).

[19] 郑卜祥, 宋永伦, 张东生, 等. 光纤Bragg光栅温度和应变传感特性的试验研究[J]. 仪表技术与传感器, 2008, No.309: 12-5+23.

[20] Bastianini F, Di Sante R, Falcetelli F, et al. Optical Fiber Sensing Cables for Brillouin-Based Distributed Measurements[J]. Sensors, 2019, 19(23).

[21] Ioannou A, Kouzoupou C, Argyrou M, et al. Monitoring the temperature and vibration response of underground optical fibres collocated with the EAC power distribution cables using state-of-the-art distributed sensing instruments[C]//Optical Sensing and Detection VII. SPIE, 2022, 12139: 443-451.

[22] Sun K, Omole O, Saputelli L, et al. Transferring Intelligent-Well-System Triple-Gauge Data Into Real-Time Flow Allocation[J]. Spe Drilling & Completion, 2012, 27(2): 264.

[23] Unalmis O H. Sound speed in downhole flow measurement[J]. Journal of the Acoustical Society of America, 2016, 140(1): 41.

[24] Unalmis O, Trehan S. In-Well, Optical, Strain-Based Flow Measurement Technology and Its Applications[J]. Eurosurveillance, 2012.

[25] 赵云飞, 王刚, 桂东旭, 等. 大庆油田特高含水后期新建原油生产能力分类标定[J]. 大庆石油地质与开发, 2022, 41: 56-62.

[26] 廖延彪, 苑立波, 田芊. 中国光纤传感40年[J]. 光学学报, 2018, 38: 10-28.

[27] Pendao C, Silva I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications[J]. Sensors, 2022, 22(19).

[28] Johny J, Amos S, Prabhu R. Optical Fibre-Based Sensors for Oil and Gas Applications[J]. Sensors, 2021, 21(18).

[29] Wang C T, Shida K. A multifunctional double-fiber type distributed optical fiber sensor[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46(2): 5.

[30] Gysling D L, Bostick F X. Changing paradigms in oil and gas reservoir monitoring-the introduction and commercialization of in-well optical sensing systems[C]//2002 15th Optical Fiber Sensors Conference Technical Digest. IEEE, 2002: 43-46.

[31] Lyu C G, Niu Z H, Tian J C, et al. Identification of Intrusion Events Based on Distributed Optical Fiber Sensing in Complex Environment[J]. Ieee Internet of Things Journal, 2022, 9(23): 24212.

[32] Kamal S Z. Fiber optic sensing: Evolution to value[C]//SPE Intelligent Energy Conference & Exhibition. OnePetro, 2014.

[33] Pradhan H S, Sahu P K. A survey on the performances of distributed fiber-optic sensors[C]//2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE). IEEE, 2015: 243-246.

[34] 英国Sensornet公司到新疆采油院进行技术交流[J]. 国外测井技术, 2009, 1.

[35] 宋牟平, 鲍翀, 裘超, 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器[J]. 光学学报, 2010, 30: 4.

[36] Ekechukwu G K, Sharma J. Well-scale demonstration of distributed pressure sensing using fiber-optic DAS and DTS[J]. Scientific Reports, 2021, 11(1).

[37] Aguirre L A, Teixeira B O, Barbosa B H, et al. Development of soft sensors for permanent downhole gauges in deepwater oil wells[J]. Control Engineering Practice, 2017, 65: 83-99.

[38] 李杰训, 贾贺坤, 宋扬, 等. 油井产量计量技术现状与发展趋势[J]. 石油学报, 2017, 38: 1434.

[39] Kragas T K, Bostick F X, Mayeu C, et al. Downhole fiber-optic multiphase flowmeter: design, operating principle, and testing[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2002.

[40] Ünalmis Ö H, Johansen E S, Perry L W. Evolution in optical downhole multiphase flow measurement: experience translates into enhanced design[C]//SPE Intelligent Energy Conference and Exhibition. OnePetro, 2010.

[41] Li T D, Fan C Z, Li H, et al. Nonintrusive Distributed Flow Rate Sensing System Based on Flow-Induced Vibrations Detection[J]. Ieee Transactions on Instrumentation and Measurement, 2021, 70.

[42] Shang Y, Wang C, Zhang Y, et al. Non-Intrusive Pipeline Flow Detection Based on Distributed Fiber Turbulent Vibration Sensing[J]. Sensors, 2022, 22(11): 4044.

[43] Hogari K, Yamada Y, Toge K. Novel Optical Fiber Cable with Small Cable Diameter Employing Rollable 20-Fiber Ribbons[J]. Ieice Transactions on Communications, 2010, E93B(9): 2433.

[44] Sasaki T, Sato F, Risch B G, et al. Ultrahigh Fiber Count and High-Density Cables, Deployments, and Systems[J]. Proceedings of the Ieee, 2022, 110(11): 71.

[45] 庄须叶, 黄涛, 邓勇刚, 等. 光纤传感技术在油田开发中的应用进展[J]. 西南石油大学学报(自然科学版), 2012, 34: 72.

[46] Inaudi D, Glisic B. Long-range pipeline monitoring by distributed fiber optic sensing[J]. Journal of pressure vessel technology, 2010, 132(1).

[47] Wu Q, Nair S, Shuck M, et al. Advanced distributed fiber optic sensors for monitoring real-time cementing operations and long term zonal isolation[J]. Journal of Petroleum Science and Engineering, 2017, 158: 479.

[48] Parker T R, Gillies A, Shatalin S V, et al. The intelligent distributed acoustic sensing[C]//23rd International Conference on Optical Fibre Sensors. SPIE, 2014, 9157: 525-528.

[49] Xue Z, Park H, Kiyama T, et al. Effects of hydrostatic pressure on strain measurement with distributed optical fiber sensing system[J]. Energy Procedia, 2014, 63: 4003-4009.

[50] Shang Y, Wang C, Ni J S, et al. Discussion on the sensitivity of optical cables based on distributed acoustic sensing[J]. Optical Review, 2019, 26(6): 63.

[51] 李晓蓉, 刘旭丰, 张毅, 等. 基于分布式光纤声传感的油气井工程监测技术应用与进展[J]. 石油钻采工艺, 2022, 44: 20.

[52] Schilke S, Donno D, Chauris H, et al. Numerical evaluation of sensor coupling of distributed acoustic sensing systems in vertical seismic profiling[C]//2016 SEG International Exposition and Annual Meeting. OnePetro, 2016.

[53] Munn J D, Coleman T I, Parker B L, et al. Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs[J]. Journal of Applied Geophysics, 2017, 138: 72-9.

[54] Ashry I, Mao Y, Wang B W, et al. A Review of Distributed Fiber-Optic Sensing in the Oil and Gas Industry[J]. Journal of Lightwave Technology, 2022, 40(5): 1407.

[55] 周小慧, 陈伟, 杨江峰, 等. DAS技术在油气地球物理中的应用综述[J]. 地球物理学进展, 2021, 36: 50.

[56] Kuvshinov B N. Interaction of helically wound fibre-optic cables with plane seismic waves[J]. Geophysical Prospecting, 2016, 64(3): 88.

[57] Hornman J C. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables[J]. Geophysical Prospecting, 2017, 65(1): 35-46.

[58] Ning I L C, Sava P. Multicomponent distributed acoustic sensing: Concept and theory[J]. Geophysics, 2018, 83(2): 1-8.

[59] 余双勇, 衣文索, 陈昊玥, 等. 分布式声传感型特种光纤结构设计[J]. 仪器仪表学报, 2021, 42: 59-69.

[60] 曹丹平, 律军军, 孙上饶, 等. 基于螺旋缠绕光纤的分布式声波传感三分量信号采集机理研究[J]. 石油物探, 2022, 61: 9.

[61] Evans R P, Blotter J D, Stephens A G. Flow rate measurements using flow-induced pipe vibration[J]. J Fluids Eng, 2004, 126(2): 5.

[62] 鄢志丹, 陈果, 许超宇. 基于有限元模型的流体管道应力应变特性仿真实验研究[J]. 实验室研究与探索, 2018, 37: 110-3+46.

[63] Bukhamsin A, Horne R. Using Distributed Acoustic Sensors to Optimize Production in Intelligent Wells[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2014.

[64] Chaudhuri A, Osterhoudt C F, Sinha D N. An Algorithm for Determining Volume Fractions in Two-Phase Liquid Flows by Measuring Sound Speed[J]. Journal of Fluids Engineering-Transactions of the Asme, 2012, 134(10).

[65] Abukhamsin A Y. Inflow Profiling and Production Optimization in Smart wells using distributed acoustic and Temperature Measurements [D]; Stanford University, 2016.

[66] Singh S P, Gangwar R, Singh N. Nonlinear scattering effects in optical fibers[J]. Progress in Electromagnetics Research-Pier, 2007, 74: 379-405.

[67] 蔡海文, 叶青, 王照勇, 等. 基于相干瑞利散射的分布式光纤声波传感技术[J]. 激光与光电子学进展, 2020, 57: 9-24.

中图分类号:

 TB937    

条码号:

 002000071346    

馆藏号:

 TD10058585    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式