- 无标题文档
查看论文信息

中文题名:

 

二维非轴对称五模材料弹性波调控分析及优化设计

    

姓名:

 杜阔    

学号:

 1049722004097    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080703    

学科名称:

 工学 - 动力工程及工程热物理 - 动力机械及工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 汽车工程学院    

专业:

 动力工程与工程热物理    

研究方向:

 声学超材料    

第一导师姓名:

 徐峰祥    

第一导师院系:

 汽车工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-31    

中文关键词:

 

五模材料 ; 非轴对称结构 ; 弹性波调控 ; 单模传输 ; 禁带

    

中文摘要:

噪声已成为第二大环境污染源,对人类身心健康、工业发展等造成了严重的威胁。因此,噪声污染控制的相关研究已经成为当前的热点。随着声子晶体等周期性材料的深入研究,具有流体特性的固态五模材料在调控弹性波方面表现出巨大潜力。本文基于五模材料的超常弹性波调控性能,借助参数分析和应用场景仿真,研究了五模材料单胞的声学特性,揭示了五模材料能带变化规律。此外,为进一步改善传统五模材料的弹性波调控能力,设计了三类非轴对称二维五模材料及单胞构型,并对单胞进行了相应的材料优化与结构调整以改善其调节性能,旨在探究构型对五模材料低频宽带特性的影响规律。主要的研究内容如下:

(1)基于六边形排列,构造了布拉格型与局域共振型五模材料及单胞,并通过COMSOL确定了其能带结构图。根据能带结构图并结合相应的场景仿真算例,验证并分析了五模材料的弹性波调控功能。

(2)利用控制变量方法,确定了影响五模材料弹性波调控特性的关键因素,结果表明:杨氏模量、密度、结构双锥宽、节点半径以及双锥轴向长度对能带结构均具有显著影响。通过本文总结的弹性波调控影响规律的参数分析,可以为五模单胞材料和结构参数的选择提供合理指导。

(3)基于五模材料相关参数分析的结果,采用曲边提取线替代原锥元结构中的直边,以不同的曲边叶数和曲边函数,构造出多种布拉格型的非轴对称曲边五模材料。经过能带分析后优选出非轴对称椭圆曲边五模结构,并对此单元结构进行多目标优化。选用最优拉丁超立方方法进行抽样,随后以组合加点准则构造高精度Kriging模型,通过NSGA-II非支配排序多目标优化算法进行可行解求取,结合适应度函数求出最终折衷解。与传统轴对称直边五模材料相比,优化后的非轴对称五模材料单模传输区域扩宽约0.6倍,第一带隙低频性也得到了显著提升。

(4)为解决低频弹性波难以调控的问题,在布拉格型单胞基础上以橡胶局域振子替代双锥间硬质节点圆接触,构造了具有局域共振特性的轴对称五模材料结构,能带分析表明这类局域共振单胞第一带隙低频性较好。在此构型基础上,以引入飞镖结构与掺杂材料的方式构建了新型局域共振非轴对称五模材料单胞,探究了飞镖个数、结构与材料参数对能带性能的影响,发现这类非轴对称单胞具有更优异的低频能带结构,同时保持了设计原型的单模传输区域性能。此外,经性能对比后选出了性能最为优异的含掺杂材料三叶飞镖单胞作为参数优化对象。进一步以此单胞的飞镖锥角和硬质节点圆半径为设计变量,单模传输区域和第一带隙的带宽为优化目标,优化改进后的五模单胞相比轴对称局域共振单胞单模区域扩宽近2.3倍,第一带隙带宽提升约0.8倍,总体的弹性波调控频率范围提高了202%,低频调控性能得到了明显的提升。

参考文献:

[1] 唐兆民. 噪声污染的现状、危害及其治理[J]. 生态经济, 2017, 33(01): 6-9.

[2] 尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(03): 508-586.

[3] Milton G W, Cherkaev A V. Which elasticity tensors are realizable?[J]. Journal of Engineering Materials and Technology, 1995, 117(4): 483‒493.

[4] Kadic M, Buckmann T, Stenger N, et al. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters 2012, 100(19): 191901.

[5] 陈毅, 刘晓宁, 向平, 等. 五模材料及其水声调控研究[J]. 力学进展, 2016, 46(1): 382-434.

[6] 王兆宏, 蔡成欣, 楚杨阳, 等. 用于声波调控的五模式超材料[J]. 光电工程, 2017, 44(1): 34-48, 122.

[7] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20): 150-157.

[8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. science, 2001, 292(5514): 77-79.

[9] 郭桂梅, 邓欢忠, 韦献革, 等. 噪声对人体健康影响的研究进展[J]. 职业与健康, 2016, 32(05): 713-716.

[10] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 11.

[11] 叶剑平. 潜艇主要噪声源分离技术综述[J]. 中国科技信息, 2012(06): 50-51.

[12] 王轩, 郝璐, 黄兴军, 等. 国外超材料及隐身斗篷技术发展研究[J]. 飞航导弹, 2017(05): 50-54.

[13] Gupta G S. Natural flexural waves and the normal modes of periodically-supported beams and plates[J]. Journal of Sound and Vibration, 1970, 13(1):89–101.

[14] Gupta G S. Natural frequencies of periodic skin-stringer structures using a wave approach[J]. Journal of Sound and Vibration, 1971, 16(4): 567-580.

[15] Gupta G S. Propagation of flexural waves in doubly-periodic structures[J]. Journal of Sound and Vibration, 1972, 20(1): 39-49.

[16] Sigalas M M. Elastic and acoustic wave band structure[J]. Journal of sound and vibration, 1992, 158(2): 377-382.

[17] Qiu C, Liu Z. Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals[J]. Applied physics letters, 2006, 89(6): 063106.

[18] Wen J, Yu D, Cai L, et al. Acoustic directional radiation operating at the pass band frequency in two-dimensional phononic crystals[J]. Journal of Physics D: Applied Physics, 2009, 42(11): 115417.

[19] Tang L, Cheng L. Periodic plates with tunneled acoustic-black-holes for directional band gap generation[J]. Mechanical Systems and Signal Processing, 2019, 133: 106257.

[20] Sigalas M M. Elastic wave band gaps and defect states in two-dimensional composites[J]. The Journal of the Acoustical Society of America, 1997, 101(3): 1256-1261.

[21] Sigalas M M. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders[J]. Journal of Applied Physics, 1998, 84(6): 3026-3030.

[22] Zhang X, Liu Z. Negative refraction of acoustic waves in two-dimensional phononic crystals[J]. Applied Physics Letters, 2004, 85(2): 341-343.

[23] Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials[J]. science, 2000, 289(5485): 1734-1736.

[24] Li J, Chan C T. Double-negative acoustic metamaterial[J]. Physical Review E, 2004, 70(5): 055602.

[25] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. science, 2006, 312(5781): 1780-1782.

[26] Chen H, Chan C T. Acoustic cloaking in three dimensions using acoustic metamaterials[J]. Applied physics letters, 2007, 91(18): 183518.

[27] Norris A N. Acoustic cloaking theory[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2097): 2411‒2434.

[28] Norris A N. Acoustic metafluids[J]. The Journal of the Acoustical Society of America, 2009, 125(2): 839-849.

[29] Bückmann T, Schittny R, Thiel M, et al. On three-dimensional dilational elastic metamaterials[J]. New journal of physics, 2014, 16(3): 033032.

[30] Schittny R, Bückmann T, Kadic M, et al. Elastic measurements on macroscopic three-dimensional pentamode metamaterials[J]. Applied Physics Letters, 2013, 103(23): 231905.

[31] Buckmann T, Thiel M, Kadic M, Schittny R, Wegener M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 2014, 5(5): 4130.

[32] Aravantinos-Zafiris N, Sigalas M M, Economou E N. Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure[J]. Journal of Applied Physics, 2014, 116(13): 133503.

[33] Xiao Q J, Wang L, Wu T, et al. Research on Layered Design of Ring-Shaped Acoustic Cloaking Using Bimode Metamaterial[J]. Applied Mechanics & Materials, 2014, 687-691: 4399-4404.

[34] Cai X, Wang L, Zhao Z G, et al. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters[J]. Applied Physics Letters, 2016, 109(13): 791-113.

[35] 张向东, 陈虹, 王磊, 等. 圆柱形分层五模材料声学隐身衣的理论与数值分析[J]. 物理学报, 2015, 64(13): 0134303.

[36] Cai C, Wang Z, Li Q, et al. Pentamode metamaterials with asymmetric double-cone elements[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175103.

[37] Wang Z, Cai C, Li Q, et al. Pentamode metamaterials with tunable acoustics band gaps and large figures of merit[J]. Journal of Applied Physics, 2016, 120(2): 024903.

[38] Kadic M, Bückmann T, Schittny R, et al. On anisotropic versions of three-dimensional pentamode metamaterials[J]. New Journal of Physics, 2013, 15(2): 023029.

[39] Hladky-Hennion A C, Vasseur J O, Haw G, et al. Negative refraction of acoustic waves using a foam-like metallic structure[J]. Applied Physics Letters, 2013, 102(14): 144103.

[40] 顾秉林, 王喜坤. 固体物理学[M]. 北京: 清华大学出版社, 1997.

[41] Kreiss H O, Oliger J. Comparison of accurate methods for the integration of hyperbolic equations[J]. Tellus, 1972, 24(3): 199-215.

[42] Adamou A T I, Craster R V. Spectral methods for modelling guided waves in elastic media[J]. The Journal of the Acoustical Society of America, 2004, 116(3): 1524-1535.

[43] 于保华, 杨世锡, 甘春标, 等. 高温圆管轴对称导波频散特性的谱方法[J]. 浙江大学学报: 工学版, 2014 (9): 1668-1675.

[44] 王献忠, 吴卫国, 庞福振, 等. 基于谱方法分析有阻尼负载圆柱壳频散特性[J]. 振动与冲击, 2015, 34(6): 13-17.

[45] 郭杨阳, 范军, 熊磊. 波导中弹性波频散曲线计算的谱方法[J]. 上海交通大学学报, 2016, 50(11): 1784-1788.

[46] Ahmad Z A B, Gabbert U. Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method[J]. Ultrasonics, 2012, 52(7): 815-820.

[47] Gomez Garcia P, Fernández-Álvarez J P. Floquet-Bloch theory and its application to the dispersion curves of nonperiodic layered systems[J]. Mathematical Problems in Engineering, 2015, 2015.

[48] 童韫哲, 范军, 王斌. Floquet-Bloch 理论在频散曲线计算中的应用[J]. 声学技术, 2020, 39(1): 11-14.

[49] 樊昕沂, 张晗, 高阳. 第十七届北方七省市区力学学会学术会议论文集[C]. 焦作: 2018: 146-152.

[50] 张晗, 杨军. 单模宽带的五模式超材料的仿真设计[J]. 2018 年全国声学大会论文集 A. 物理声学 (含声超构材料), 2018.

[51] 章亮, 张巍, 聂秋华, 等. 二维光子晶体波导研究进展[J]. 激光与光电子学进展, 2013, 50(003): 59-68.

[52] 潘宇雄, 徐峰祥,牛小强. 双锥型五模材料低频声波调控及参数设计[J/OL]. 应用声学: 1-14[2022-08-03].

[53] Martin A, Kadic M, Schittny R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B, 2012, 86(15): 155116.

[54] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学: E 辑, 2007, 37(9): 1126-1139.

[55] 蔡成欣, 宁博, 周路人, 等. 局域共振型五模超构材料的低频声波调控方法[J]. 中国材料进展, 2021, 40(1): 34-47, 21.

[56] 王兆宏, 李青蔚, 蔡成欣, 等. 可用于隔声和带隙调控的五模式超材料[J]. 声学学报, 2017, 42(5): 610-618.

[57] 韩忠华. Kriging 模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

[58] Quan N, Yin J, Ng S H, et al. Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints[J]. Iie Transactions, 2013, 45(7): 763-780.

[59] 张建侠, 马义中, 欧阳林寒, 等. 基于Kriging模型的多点加点准则和并行代理优化算法[J]. 系统工程理论与实践, 2020, 40(1): 251-261.

[60] 陈鹏, 章青, 黄磊. 基于双加点动态Kriging模型的提升塔架优化设计[J]. 中国机械工程, 2019, 30(19): 2335-2341.

[61] Liu J, Han Z H, Song W. k28th congress of the international council of the aeronautical sciences [C]. Brisbane: 2012: 23-28.

[62] Sasena M J, Papalambros P, Goovaerts P. Exploration of metamodeling sampling criteria for constrained global optimization[J]. Engineering optimization, 2002, 34(3): 263-278.

[63] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in aerospace sciences, 2009, 45(1-3): 50-79.

[64] Han Z H, Zhang K S. Surrogate-based optimization[J]. Real-world applications of genetic algorithms, 2012, 343.

[65] Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global optimization, 1998, 13(4): 455.

[66] Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary computation, 1994, 2(3): 221-248.

[67] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.

[68] Park J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of statistical planning and inference, 1994, 39(1): 95-111.

[69] 温激鸿, 王刚, 郁殿龙, 等. 声子晶体振动带隙及减振特性研究[J]. 中国科学: E 辑, 2007, 37(9): 1126-1139.

[70] 温熙森, 温激鸿, 郁殿龙, 等. 声子晶体[M]. 北京: 国防工业出版社, 2009.

[71] Zou Z, Xu F, Pan Y, et al. Parametric Analysis and Multi-Objective Optimization of Pentamode Metamaterial[J]. Sustainability, 2023, 15(4): 3421.

[72] Zou Z, Xu F, Pan Y, et al. Bandgap properties and multi-objective optimization of double-cone pentamode metamaterials with curved side[J]. Physica Scripta, 2023, 98(3): 035833.

中图分类号:

 TB535    

条码号:

 002000070700    

馆藏号:

 TD10058081    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式