- 无标题文档
查看论文信息

中文题名:

 

磷酸铁锂电池热失控传播行为及细水雾抑制效果研究

    

姓名:

 马永飞    

学号:

 1049722000029    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 安全科学与应急管理学院    

专业:

 安全科学与工程    

研究方向:

 锂电池热安全    

第一导师姓名:

 庄越    

第一导师院系:

 安全科学与应急管理学院    

完成日期:

 2023-03-21    

答辩日期:

 2023-05-18    

中文关键词:

 

磷酸铁锂电池 ; 热失控传播 ; 细水雾 ; 冷却效果 ; 浸泡

    

中文摘要:

随着能源危机和环境问题的日益突出,世界各国积极投入对新型可再生能源的开发和利用,我国力争2030年前实现“碳达峰”、2060年前实现“碳中和”,因此,作为新能源及环保低碳的锂离子电池产业得到迅猛发展。然而锂电池安全性能成为制约其推广应用的关键因素之一,特别是锂离子电池热失控难以抑制的特性使其对防控技术提出了更高的要求。因此,亟待寻求针对锂离子电池热失控的高效阻断技术,尽可能降低其造成的损害。本文从18650型磷酸铁锂电池单体热失控、电池组热失控传播及电池浸泡特性出发,研究细水雾对热失控电池的抑制效果和细水雾作为抑制剂是否存在不良副作用。

通过开展加热诱导单体电池热失控实验,发现SOC(State of Charge)是影响电池热失控和着火行为的重要内在因素。100%SOC 的电池具有最大的危险性,SOC 越大,电池热失控触发点对应温度越低,从安全阀开启到热失控触发点的间隔时间越短,电池表面温度、温升速率峰值和质量损失率越高,热失控期间产烟或喷射火现象越明显。

基于电池组热热失控传播和着火行为特性研究,揭示了不同排列和有无手动点火因素对电池组中热失控传播的影响。方型排列电池组模组内热失控传播速度显著高于行排列电池组,外部火焰通过热辐射和对流加热自身和临近电池,加速模组内热失控传播。

通过开展细水雾抑制单体电池热失控和电池组热失控传播实验,明晰细水雾对电池的冷却机制和针对热失控不同阶段适宜的细水雾抑制条件。细水雾与高温表面接触迅速蒸发吸热,冷却电池上部分,电池中下部分主要通过轴向传热和部分液滴流经电池侧表面吸热的方式得到冷却,因此细水雾对电池轴向方向的冷却具有时序性。在本研究,在电池安全阀开启和到达热失控触发点之间任意节点,释放喷雾强度为7.5L min-1m-2,工作压力为2Mpa,持续时间为30s的细水雾就能完全阻止该电池进入热失控。若当电池表面温度温升速率到达2℃/s时释放细水雾,其无法阻止电池热失控,但会显著降低电池热失控期间温升速率和最大表面温度,缓解热失控电池的热危害。对于行排列电池组而言,与单电池同样的抑制条件就能完全消除热失控传播隐患。但对于方型排列电池组而言,在第一个电池出现异常到进入完全热失控之间,与单电池同样抑制条件可以完全抑制热失控传播,但若第二个电池进入完全热失控,此时需要将释放时间延长到70s,若第三个电池进入完全热失控,长达90s的细水雾释放时间也不能有效阻止热失控传播。因此,针对方型电池组提出间歇冷却策略,该策略不仅能降低电池表面温度回升值,还能延长电池的低温持续时间,从而使细水雾的整体冷却效果更好。

通过开展电池组浸泡实验,研究细水雾作为抑制剂是否存在不良副作用。电池组浸泡过程中与水形成电解池,放电电解水,电解现象与放电量主要受电池组电压的影响。从电池组总放电量和电压数据来看,电池组没有出现大规模放电和明显的外部短路和现象。从100次循环测试、小倍率放电测试和混合动力脉冲能力特性(Hybrid Pulse Power Characteristic;HPPC)测试数据来看,电池与新电池无明显差异,但长时间的浸泡可能会造成安全阀被腐蚀,导致其结构强度下降。

参考文献:

[1] 董亮. “碳中和”前景下的国际气候治理与中国的政策选择 [J]. 外交评论(外交学院学报), 2021, 38(06): 132-154+138.

[2] Ren D, Feng X, Lu L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery [J]. Journal of Power Sources, 2017, 364: 328-340.

[3] Feng X, Ouyang M, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J]. Energy Storage Materials, 2018, 10: 246-267.

[4] Wen J, Zhao D, Zhang C. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency [J]. Renewable Energy, 2020, 162: 1629-1648.

[5] Dubarry M, Devie A. Battery durability and reliability under electric utility grid operations: Representative usage aging and calendar aging [J]. Journal of Energy Storage, 2018, 18: 185-195.

[6] Doughty D H, Roth E P. A General Discussion of Li Ion Battery Safety [J]. The Electrochemical Society interface, 2012, 21(2): 37-44.

[7] Liu M Y K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries [J]. Journal of Energy Chemistry, 2020, 43(4): 58-70.

[8] Chen Q, Zhang G, Zhang X, et al. Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability [J]. Applied Energy, 2021, 286: 116496.

[9] Dubarry M, Qin N, Brooker P. Calendar aging of commercial Li-ion cells of different chemistries – A review [J]. Current Opinion in Electrochemistry, 2018, 9: 106-113.

[10] Zichen W, Changqing D. A comprehensive review on thermal management systems for power lithium-ion batteries [J]. Renewable & Sustainable Energy Reviews, 2021, 139: 110685.

[11] Zhu S, Hu C, Xu Y, et al. Performance improvement of lithium-ion battery by pulse current [J]. Journal of Energy Chemistry, 2020, 46(7): 208-214.

[12] Lopez C F, Jeevarajan J A, Mukherjee P P. Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules [J]. Journal of The Electrochemical Society, 2015, 162(9): A1905-A1915.

[13] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells [J]. Journal of Power Sources, 2003, 113(1): 81-100.

[14] Mao B, Chen H, Cui Z, et al. Failure mechanism of the lithium ion battery during nail penetration [J]. International Journal of Heat & Mass Transfer, 2018, 122: 1103-1115.

[15] Yuan Q, Zhao F, Wang W, et al. Overcharge failure investigation of lithium-ion batteries [J]. Electrochimica Acta, 2015, 178(15): 682-688.

[16] Liu B, Jia Y, Yuan C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review [J]. Energy Storage Materials, 2019, 24: 85-112.

[17] Kriston A, Pfrang A, Döring H, et al. External short circuit performance of Graphite-LiNi1/3Co1/3Mn1/3O2 and Graphite-LiNi0.8Co0.15Al0.05O2 cells at different external resistances [J]. Journal of Power Sources, 2017, 361: 170-181.

[18] Zhong G, Mao B, Wang C, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter [J]. Journal of Thermal Analysis & Calorimetry, 2019, 135(5): 2879-2889.

[19] H L, HD C, GB Z, et al. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition [J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 122-129.

[20] 毛斌斌. 18650型三元锂离子电池热失控临界条件及火灾动力学研究 [D]; 中国科学技术大学, 2021.

[21] Ping P, Kong D, Zhang J, et al. Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating [J]. Journal of Power Sources, 2018, 398: 55-66.

[22] Liu T, Liu Y, Wang X, et al. Cooling control of thermally-induced thermal runaway in 18,650 lithium ion battery with water mist [J]. Energy Conversion and Management, 2019, 199: 111969.

[23] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究 [D]; 中国科学技术大学, 2014.

[24] Gachot G, Ribière P, Mathiron D, et al. Gas Chromatography/Mass Spectrometry As a Suitable Tool for the Li-Ion Battery Electrolyte Degradation Mechanisms Study [J]. Analytical Chemistry, 2011, 83(2): 478-485.

[25] 赵春朋. 受限空间三元锂离子电池热失控燃爆危险性研究 [D]; 中国科学技术大学, 2021.

[26] 李毅, 于东兴, 张少禹, 等. 典型锂离子电池火灾灭火试验研究 [J]. 安全与环境学报, 2015, 15(06): 120-125.

[27] Meng X, Yang K, Zhang M, et al. Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery [J]. Journal of Energy Storage, 2020, 30: 101532.

[28] 饶慧, 罗肖锋, 刘安, 等. 电动船三元锂电池舱与磷酸铁锂电池舱灭火对比试验研究 [J]. 消防科学与技术, 2021, 40(03): 433-437.

[29] Wang Q, Shao G, Duan Q, et al. The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire [J]. Fire Technology, 2015, 52(2): 387-396.

[30] 冒爱琴, 丁赔赔, 丁梦玲, 等. 哈龙替代型含氟灭火剂灭火过程中HF生成及灭火机理研究进展 [J]. 过程工程学报, 2016, 16(04): 714-720.

[31] 傅学成, 陈涛, 周彪, 等. 七氟丙烷与火焰作用过程中产生的氟化氢研究 [J]. 燃烧科学与技术, 2011, 17(04): 363-367.

[32] Zhang L, Li Y, Duan Q, et al. Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires [J]. Journal of Energy Storage, 2020, 32: 101801.

[33] Xu W, Jiang Y, Ren X. Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant [J]. Journal of Fire Sciences, 2016, 34(4): 289-304.

[34] Pagliaro J L, Linteris G T. Hydrocarbon flame inhibition by C6F12O (Novec 1230): Unstretched burning velocity measurements and predictions [J]. Fire Safety Journal, 2017, 87: 10-17.

[35] Liu Y, Yang K, Zhang M, et al. The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire [J]. Journal of Energy Chemistry, 2022, 65: 532-540.

[36] Said A O, Stoliarov S I. Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent [J]. Fire Safety Journal, 2021, 121.

[37] Maloney T. Extinguishment of Lithium-Ion and Lithium-Metal Battery Fires Final Report [R]: Federal Aviation Administration, 2014.

[38] Blum A, Long R T. Full-scale Fire Tests of Electric Drive Vehicle Batteries [J]. SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS, 2015, 8(2): 565-572.

[39] Liu Z, Kim A K. A Review of Water Mist Fire Suppression Systems- Fundamental Studies [J]. Journal of Fire Protection Engineering, 1999, 10(3): 32-50.

[40] Liu T, Tao C, Wang X. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules [J]. Applied Energy, 2020, 267: 115087.

[41] Zhang L, Duan Q, Liu Y, et al. Experimental investigation of water spray on suppressing lithium-ion battery fires [J]. Fire Safety Journal, 2021, 120: 103117.

[42] Huang Z, Liu P, Duan Q, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery [J]. Journal of Power Sources, 2021, 495: 229795.

[43] Zhang L, Zhao C, Liu Y, et al. Electrochemical performance and thermal stability of lithium ion batteries after immersion [J]. Corrosion Science, 2021, 184: 109384.

[44] 叶庆盼. 涉水锂离子电池热失控及其传播特性研究 [D]; 合肥工业大学, 2020.

[45] Tao C, Ye Q, Wang C, et al. An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times [J]. Journal of Cleaner Production, 2020, 242: 118539.

[46] Chombo P V, Laoonual Y. A review of safety strategies of a Li-ion battery [J]. Journal of Power Sources, 2020, 478: 228649.

[47] Fire Tests - Full Scale Room Test for Surface Products: CAN/ULC 9705-13 [S]. 2013.

[48] Reaction-to-fire tests. Heat release, smoke production and mass loss rate. Heat release rate and smoke production rate under reduced oxygen atmospheres: PD ISO/TS 5660-5 [S]. 2020.

[49] Mao B, Liu C, Yang K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode [J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717.

[50] 陆春义. 细水雾喷射系统及灭火机理研究 [D]; 南京理工大学, 2004.

[51] Meng X, Li S, Fu W, et al. Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires [J]. eTransportation, 2022, 11: 100142.

[52] Zhang J, Wu B, Li Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries [J]. Journal of Power Sources, 2014, 259: 106-116.

[53] Spinner N S, Mazurick R, Brandon A, et al. Analytical, numerical and experimental determination of thermophysical properties of commercial 18650 LiCoO2 lithium-ion battery [J]. Journal of The Electrochemical Society, 2015, 162(14): A2789-A2795.

[54] 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究 [J]. 中国电机工程学报, 2021, 41(09): 3283-3293.

[55] Nam S. Development of a computational model simulating the interaction between a fire plume and a sprinkler spray [J]. Fire Safety Journal, 1996, 26(1): 1-33.

[56] Pastor-Fernandez C, Widanage W D, Chouchelamane G H, et al. A SoH diagnosis and prognosis method to identify and quantify degradation modes in Li-ion batteries using the IC/DV technique [C]. 6th Hybrid and Electric Vehicles Conference London, UK; IET. 2016

[57] Dubarry M, Truchot C, Liaw B Y. Synthesize battery degradation modes via a diagnostic and prognostic model [J]. Journal of Power Sources, 2012, 219: 204-216.

[58] 吴伟雄. 基于相变材料的电池热管理性能研究 [D]; 华南理工大学, 2019.

[59] Xu C, Ouyang M, Lu L, et al. Preliminary Study on the Mechanism of Lithium Ion Battery Pack under Water Immersion [J]. ECS Transactions, 2017, 77(11): 209-211.

[60] Dubarry M, Truchot C, Liaw B Y. Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs [J]. Journal of Power Sources, 2014, 258: 408-419.

中图分类号:

  TM912     

条码号:

 002000071237    

馆藏号:

 TD10058513    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式