- 无标题文档
查看论文信息

中文题名:

 

玻璃纤维复合材料波形弹簧设计与试验研究

    

姓名:

 付凯    

学号:

 1049722002133    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 现代设计理论与应用    

第一导师姓名:

 文湘隆    

第一导师院系:

 机电工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-18    

中文关键词:

 

玻璃纤维复合材料 ; 波形弹簧 ; 有限元仿真分析 ; 振动特性分析

    

中文摘要:

弹簧作为一种弹性零部件,常在机械系统中作为减振、连接以及缓冲元件。其应用范围广泛,常用于机械系统、航空航天和汽车等领域。在机械领域中,弹簧经常被用于压力机、离心机等机械设备,以减少设备运转时的振动和噪音,提高设备的稳定性和安全性。

汽车行业中,弹簧常被用于为悬架系统中,常规的金属弹簧容易被氧气腐蚀,并且金属弹簧的重量较大,与汽车轻量化的设计理念相悖。纤维复合材料因其较高的强度-重量比、优异的弹性变形储能能力、良好的材料阻尼性能以及优异的耐腐蚀性能,逐渐取代了常规金属,并成为近年来制作弹簧的先进材料。

本文利用有限元仿真分析与试验相结合的方法,研究了玻璃纤维复合材料波形弹簧的压缩性能及其隔振性能。本文的具体研究如下:

(1)利用有限元仿真研究了结构参数对波形弹簧压缩性能的影响。本文利用VUMAT子程序对不同周期和幅值波形弹簧的压缩性能、失效模式以及疲劳寿命进行仿真分析。仿真结果表明,随着周期的增加,波形弹簧的刚度逐渐增加,极限载荷变化较小;随着幅值的增加,波形弹簧的刚度和极限载荷均逐渐减小。所有类型的波形弹簧的有效循环次数均满足悬架弹簧的参照循环次数。

(2)本文通过热压罐成型工艺制作了相应的试验件,通过电子万能试验机对其进行压缩测试。由试验结果可知,不同周期波形弹簧的仿真结果和试验结果相比,随着周期的增加两者的变化趋势一致,但与试验结果相比,仿真刚度最大相差8.9%,仿真极限载荷最大相差15%。

(3)本文将GFRP波形弹簧与金属螺旋弹簧进行对比分析。由于条件限制,本文使二者的装配空间保持一致。试验结果表明,GFRP波形弹簧和金属螺旋弹簧的刚度分别为20.04 N/mm和10.61 N/mm。GFRP波形弹簧和金属螺旋弹簧的重量分别为157.82 g和215.65g。从试验结果可以看出,相较于金属螺旋弹簧,GFRP波形弹簧的刚度提高了88.88%,重量减轻了26.82%。

(4)本文利用B&K振动噪声测试系统,研究了不同周期的波形弹簧在自由状态和约束状态下的振动特性。并将自由状态下的波形弹簧和金属弹簧进行对比,试验结果表明,波形弹簧的隔振区间和振动衰减幅度均高于金属弹簧。在33-311 Hz的扫频范围内,波形弹簧在约束状态下的具有更好的隔振性能。当激励频率大于400Hz时,约束状态下的波形弹簧的隔振效果更好,其振动衰减幅度最高为124.74 dB,而自由状态下的波形弹簧的振动衰减幅度最高为69.16 dB。

参考文献:

[1] 聂采顺. 汽车及零部件轻量化技术现状及研究方向[J]. 汽车实用技术, 2015, (09) : 29-32.

[2] Fernandes J C M, Goncalves P J P, Silveira M. Interaction between asymmetrical damping and geometrical nonlinearity in vehicle suspension systems improves comfort[J]. Nonlinear Dynamics, 2020, 99(2) : 1561-1576.

[3] Ekanthappa J, Basavarajappa S, Sogalad I. Proceedings of the National Conference on Challenges in Research & Technology in the Coming Decades, Karnataka, 2013[C]. Karnataka: Institution of Engineering and Technology. 2013.

[4] Ke J, Wu Z-y, Liu Y-s, et al. Design method, performance investigation and manufacturing process of composite helical springs: A review[J]. Composite Structures, 2020, 252: 112747.

[5] Rheinmetall. New product for lightweight automotive engineering is a world first[EB/OL].

(2022-4-28).[2022-7- 01]. https://www.rheinmetall.com/en/rheinmetall_ag/press/news/ latest

_news/index_30784.php?_ga=2.19141624.1393393894.1651215409-912009293.165121540.

[6] EV世纪. 如何实现史上最低能耗?奔驰CTO详解VISION EQXX概念车黑科技[EB/OL]. (2022-4-21) [2022-7- 01]. https://baijiahao.baidu.com/s?id=1730687036967529417

&wfr=spider&for=pc.

[7] Monaldo E, Nerilli F, Vairo G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263.

[8] Vieira P R, Carvalho E M L, Vieira J D, et al. Experimental fatigue behavior of pultruded glass fibre reinforced polymer composite materials[J]. Composites Part B: Engineering, 2018, 146: 69-75.

[9] 詹博文,孙凌玉,黄彬城,等. 车用复合材料螺旋弹簧的设计与优化[J]. 北京航空航天大学学报, 2018, 第44卷(第7期) : 1520-1527.

[10] Choi B L, Choi B H. Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs[J]. Composites Part B: Engineering, 2015, 82: 42-49.

[11] 杨永宝. 碳纤维复合材料圆柱螺旋弹簧的刚强度设计方法研究[D]. 清华大学, 2013.

[12] Zebdi O, Boukhili R, Trochu F. Optimum Design of a Composite Helical Spring by Multi-criteria Optimization[J]. Journal of Reinforced Plastics and Composites, 2009, 28(14) : 1713-1732.

[13] Erfanian-Naziftoosi HR, Shams SS, Elhajjar R. Composite wave springs: Theory and design[J]. Materials & Design, 2016, 95: 48-53.

[14] Luger M, Traxl R, Hofer U, et al. RUC-based multi-scale model for braid-reinforced polymers: Application to coil springs[J]. Composites Part B-Engineering, 2018, 155: 431-443.

[15] Stephen C, Selvam R, Suranjan S. Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences, Dubai, 2019[C]. United arab emirates: Institute of Electrical and Electronics Engineers, 2019.

[16] Li Y. The compression and fatigue effect of different fibers of braided composite spiral spring[D]. Taiwan. China; Fengjia University, 2006.

[17] Budan D A, Manjunatha T S. Investigation on the feasibility of composite coil spring for automotive applications[J]. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2010, 4(No.10) : 1035-1039.

[18] Khoddama S, Estrin Y, Kim HS, et al. Torsional and compressive behaviours of a hybrid material: Spiral fibre reinforced metal matrix composite[J]. Materials & Design, 2015, 85: 404-411.

[19] 仲济轮. 轿车用纤维织物树脂复合材料悬架弹簧的正向设计及其性能研究[D]. 吉林大学, 2017.

[20] 孙延标. 单向玄武岩纤维复合材料螺旋弹簧的数值模拟与实验研究[D]. 吉林大学, 2020.

[21] Chiu C, Hwan C, Tsai H, et al. An experimental investigation into the mechanical behaviors of helical composite springs[J]. Composite Structures, 2007, 77(No.3) : 331-340.

[22] 刘宇宸. 碳/玻璃纤维复合材料压簧静动力学特性及制备方法研究[D]. 东北林业大学, 2021.

[23] Ekanthappa J, Basavarajappa S, Shankar G S S. Fabrication & Experimentation of the Glass-Epoxy Helical Spring Reinforced With Graphite Powder[J]. Materials Today-Proceedings. 2017: 11034-11038.

[24] Gunarathna C H, Ranasinghe A D, Piyumal N A, et al. Proceedings of the 8th International Multidisciplinary Moratuwa Engineering Research Conference, Katubedda, 2022[C]. Moratuwa: Institute of Electrical and Electronics Engineers, 2022.

[25] Chen S, Zhang Y, Zhang C, et al. A Simple Way to Prepare C/SiC Spring[J]. International Journal of Applied Ceramic Technology, 2014, 11(1) : 186-192.

[26] 陈玲. 碳纤维复合材料螺旋弹簧的制备及其性能研究[D]. 天津工业大学, 2020.

[27] 崔健, 史珍, 曹亚周, 等. 树脂基复合材料在拉挤成型工艺中的研究现状[J]. 石化技术, 2022, 29(10) : 33-35.

[28] 孙琳,苏顺生,张仁航,等. 碳纤维复合材料成型工艺的研究进展材料科学[J]. 材料科学, 2022, (第8期) : 829-835.

[29] 李赓. 拉挤-真空导入工艺成型复合材料及性能研究[D]. 国防科技大学, 2019.

[30] 余木火,王昊,余许多,等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2022, 第39卷(第12期) : 5688-5698.

[31] 杨正伟,冯婧婧,张炜,等. 缠绕工艺关键参数对T800碳纤维复合材料壳体强度的影响[J]. 固体火箭技术, 2022, 第45卷(第3期) : 416-423.

[32] 左千. 纤维缠绕复合材料压力容器爆破压力研究与优化设计[D]. 浙江大学, 2022.

[33] 李梦颖. 面向湿法缠绕成型的T700/环氧复合材料微波固化机理及工艺研究[D]; 南京航空航天大学, 2021.

[34] Ekanthappa J, Shankar G S S, Amith B M, et al. Fabrication and experimentation of FRP helical spring[J]. Materials Science and Engineering, 2016, 149: 6.

[35] 刘宇宸, 花军, 宁礼佳. 碳/玻璃纤维混编复合材料压簧制作方法及实验研究[J]. 复合材料科学与工程, 2021, No.325(02) : 43-48.

[36] Alm F F. Dynamic analysis of composite coil springs of arbitrary shape[J]. Composites Part B: Engineering, 2009, 40(No.8) : 741-757.

[37] Yıldırım V. Free vibration of uniaxial composite cylindrical helical springs with circular section[J]. Journal of Sound and Vibration, 2001, 239(NO.2) : 321-333.

[38] Yıldırım V. Free Vibration Characteristics of Composite Barrel and Hyperboloidal Coil Springs[J]. Mechanics of Composite Materials and Structures, 2001, 8(No.3) : 205-217.

[39] 刘宇宸, 花军, 冯超毅. 单向纤维复合材料弹簧固有频率计算[J]. 机械设计与研究, 2022, 38(02) : 128-133.

[40] 郝颖,虞爱民. 单向复合材料矩形截面非圆柱螺旋弹簧固有频率的参数研究[J]. 振动与冲击, 2012, 第31卷(第23期) : 92-98.

[41] 郝颖, 虞爱民. 单向复合材料矩形截面圆柱弹簧的自由振动[J]. 同济大学学报(自然科学版), 2012, 40(12) : 1870-1875.

[42] Kacar I, Yildirim V. Free vibration/buckling analyses of noncylindrical initially compressed helical composite springs[J]. mechanics based design of structures and machines, 2016, 44(4) : 340-353.

[43] Kacar I, Yildirim V. Proceedings of the 10th Biennial International Conference on Vibration Problems, Prague, 2011[C]. Prague: Springer Netherlands, 2011:119-124.

[44] Yu A M, Hao Y. Warping effect in free vibration analysis of unidirectional composite non-cylindrical helical springs[J]. Meccanica, 2013, 48(10) : 2453-2465.

[45] Ayadi S, Taieb EH. proceedings of the 5th Algerian Congress of Mechanics, Algeria,2015 [C]. Cham: Springer International Publishing, 2017: 227-238.

[46] Sancaktar E, Gowrishankar S, Asme. Natural frequencies of composite cylindrical helical springs manufactured using filament winding [J]. 2009 , 49002: 785-790.

[47] Gupta N, Bagha AK, Bahl S. Proceedings of the International Conference on Recent Advances in Mechanical Engineering Research and Development, Bhubaneswar, 2020[C]. Cham: Springer Singapore, 2021.

[48] Gao J, Han P. Analysis and Optimization of Suspension Spring Stiffness for Improving Frequency Response Characteristics of the Vehicle[J]. Mathematical Problems in Engineering, 2022: 623-640.

[49] Chen L, Xing W, Wu L, et al. Understanding multiple parameters affecting static and dynamic performances of composite helical springs[J]. Journal of Materials Research and Technology, 2022, 20: 532-550.

[50] Zhang Y, Wu J, Pan J, et al. A new nonlinear spatial compliance model method for flexure leaf springs with large width-to-length ratio under large deformation[J]. Micromachines, 2022, 13: 1090.

[51] Yildirim MC, Şendur P, Kansizoglu AT, et al. Design and development of a durable series elastic actuator with an optimized spring topology[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. 235(24):7848-7858.

[52] Xie L, Du R. On spiral spring in elastic deformation[J]. materials, mechanical engineering and manufacture, PTS 1-3, 2013, 268-270.

[53] Roesler J. Mechanical behaviour of engineering materials:metals, Ceramics, Polymers, and Composites[M]. New York, Berlin: Springer; Springer, 2011.

[54] Jun K, Jingen X, Zhen W, et al. A theoretical model used for stiffness matching design and structure optimization of composite helical spring with nonlinear stiffness[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(4): 142.

[55] 刘牛. 轻型飞机复合材料结构力学性能及失效机理研究[D]. 重庆理工大学, 2022.

[56] Bing Q, Sun CT. Effect of compressive transverse normal stress on mode II fracture toughness in polymeric composites[J]. International Journal of Fracture, 2007, 145(2) : 89-97.

[57] Liao BB, Liu PF. Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact[J]. Composite Structures, 2017, 159: 567-578.

[58] Hu H, Wei Q, Liu B, et al. Progressive Damage Behaviour Analysis and Comparison with 2D/3D Hashin Failure Models on Carbon Fibre–Reinforced Aluminium Laminates[J]. POLYMERS, 2022, Vol.14: 2946.

[59] 王玉梅. 玻璃纤维分类定义和代号[M]. 玻璃纤维制品标准宣贯会暨产业用无机纤维技术研讨会: 南京玻璃纤维研究设计院全国玻璃纤维化技术委员会, 2019.

[60] 杨德旭, 祝海峰, 张林文. 复合材料板簧研究进展[J]. 玻璃钢/复合材料, 2014, (10) : 84-89.

[61] 王哲, 陆柯颖, 王乔坎, 等. 水平荷载作用下压力型扩大头锚杆承载特性试验研究[J]. 岩土工程学报, 2020, 42(S1) : 193-197.

[62] 冯鑫. 商用车驾驶室正面碰撞性能优化研究[D]. 华中科技大学, 2020.

[63] 祁曼. TiSi2/酚醛树脂防隔热复合材料制备和性能研究[D]. 武汉理工大学, 2021.

[64] 张文武. 纤维增强热塑性复合材料模压成型与低速冲击性能研究[D]. 湖南大学, 2020.

[65] 戎笑远. 热压罐成型碳纤维增强树脂基复合材料典型缺陷评价研究[D]. 东华大学, 2022.

[66] 卢虎城. 头盔RTM工艺模具设计及充模仿真分析[D]. 东华大学, 2022.

[67] 李豫川, 翁泽宇, 唐杰, 等. 柔性基础双层隔振系统隔振效果评价的研究[J]. 噪声与振动控制, 2018, 38(06) : 172-177.

[68] 杨海如. 基于材料与结构阻尼的CFRP筏架阻尼性能研究[D]. 武汉理工大学, 2021.

[69] Zhang J, Rao J, Ma L, et al. Investigation of the Damping Capacity of CFRP Raft Frames[J]. Materials, 2022, Vol.15(No.2): 653.

[70] Zhang J, Xia X, Wen X, et al. Investigations on the band-gap characteristics of variable cross-section periodic structure support made of acrylonitrile-butadiene-styrene[J]. Materials, 2022, 15(No.12) : 4308.

中图分类号:

  TB332;TH432.1    

条码号:

 002000071325    

馆藏号:

 TD10058425    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式