- 无标题文档
查看论文信息

中文题名:

 

融合机器学习与光纤光栅传感的介入式器械术中姿态监测方法

    

姓名:

 宋珍珍    

学号:

 1049722002110    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 智能手术器械传感器研制    

第一导师姓名:

 李天梁    

第一导师院系:

 机电工程学院    

完成日期:

 2023-03-22    

答辩日期:

 2023-05-19    

中文关键词:

 

FBG传感器 ; 介入式器械形状感知 ; BP神经网络 ; 波长解调 ; HPO算法

    

中文摘要:

手术机器人需要有较高的稳定性和运动精度,且兼顾术前路径规划与术中反馈控制能力,这有助于提高微创外科手术机器人的灵巧性和可操作性并发掘其全部潜力。同时手术机器人术中自主避障及靶点精准操作需依靠实时的形状反馈信息。然而现阶段形状感知系统的速度、精度及其与手术器械的集成能力较差,难以满足复杂临床应用需求。近年来光纤传感器以其体积小易于集成、抗电磁干扰、应变敏感性、生物兼容性及分布式测量等优势,在手术器械形状感知领域应用越来越广泛。然而术中手术器械形状传感器非线性特性极大的限制了其感知精度。因此联合光纤光栅传感技术与人工智能技术进一步提高手术器械形状感知精度,并为手术机器人的自主/主从操作提供器械动态形状信息,最终实现空间姿态形状感知仍具有挑战性与重要意义。鉴于此本文将结合分布式光纤光栅传感网络与机器学习,研制微创医疗器械三维形状光纤光栅传感器,并构建形状感知与重构模型,本文主要展开的工作如下:

(1)环境噪声干扰会降低形状感知中分布式光纤光栅波长解调精度,进而降低手术器械形状重构准确性。针对这一问题,本文提出了一种融合小波软阈值去噪和Trip-Hop寻峰算法的分布式光纤光栅光谱信噪分离及波长寻峰算法,以实现中心波长的准确解调,为后续光纤光栅形状感知系统提供准确的输入数据。

(2)针对术中穿刺针形状实时反馈需求提出了一种波分混合复用的光纤光栅形状自感知穿刺针构型。然而光纤光栅形状自感知穿刺针在封装、制造及术中会产生各种非线性特征,使以微分几何理论为基础的形状重构算法速度与精度较差。针对上述问题本文提出了一种基于BP神经网络的形状重构方法以实现术中穿刺针空间形状实时感知测量,并开展了形状重构精度验证实验。

(3)针对运动空间及姿态维度更高的介入式导管形状感知问题,提出了一种光纤光栅形状感知传感器构型及其封装方法。考虑传感器封装过程的扭曲变形导致传感器难以精准标定等问题,提出基于BP神经网络算法和Frenet-Serret方程的形状重构理论。并结合HPO(Hunter-Prey Optimization, HPO)算法确定了形状感知神经网络模型最优参数。通过传感器多曲率标定实验,构建神经网络训练数据集,验证该模型在解决介入式导管形状传感器非线性问题上的可行性。

参考文献:

[1] Burgner-Kahrs J, Rucker D C, Choset H. Continuum Robots for Medical Applications: A Survey[J]. IEEE Transactions on Robotics, 2015, 31(6):1261-1280.

[2] Vitiello V, Lee S L, Cundy T P,et al. Emerging robotic platforms for minimally invasive surgery[J]. IEEE reviews in biomedical engineering, 2012, 6: 111-126.

[3] Shi C., Luo X, Qi P, et al. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(8):1665-1677.

[4] Issatayeva A, Amantayeva A, Blanc W, et al. Design and analysis of a fiber-optic sensing system for shape reconstruction of a minimally invasive surgical needle[J]. Scientific Reports, 2021, 11(1): 8609.

[5] Li M, Li G, Gonenc B, et al. Towards human‐controlled, real‐time shape sensing based flexible needle steering for MRI‐guided percutaneous therapies[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2): 1762.

[6] Ourak M, De Buck S, Ha X T, et al. Fusion of Biplane Fluoroscopy With Fiber Bragg Grating for 3D Catheter Shape Reconstruction [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6505-6512.

[7] Hu X, Chen A, Luo Y, et al. Steerable catheters for minimally invasive surgery: a review and future directions[J]. Computer Assisted Surgery, 2018, 23(1): 21-41.

[8] Ali A, Plettenburg D H, Breedveld P. Steerable catheters in cardiology: Classifying steerability and assessing future challenges[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 679-693.

[9] 张杰, 郑磊, 刘树铭等. 空心针穿刺活检在口腔颌面部肿瘤的应用[J]. 北京大学学报:医学版, 2013, (11): 2542-2543.

[10] 王珂, 任予, 陈武科. 恶性肿瘤的放射性粒子植入治疗[J]. 现代肿瘤医学, 2004, 12(5): 485-487.

[11] 成天佑. 脊柱穿刺手术机器人系统交互引导控制与实现[D]. 上海交通大学, 2020.

[12] 徐淑军, 陈腾, 吴承远等. 神经导航下三叉神经节射频热凝治疗三叉神经痛的临床研究[J]. 中华神经外科杂志, 2005, 21(7): 443-444.

[13] 管雅喆, 任萌, 郭冬利等. 肺癌筛查研究进展[J].中国肺癌杂志, 2020, 23(11): 954-960

[14] 王汉萍, 张力, 梁智勇. 正确看待细胞病理学在肺癌诊断中的意义[J]. 中华病理学杂志, 2013, 42(11): 726-728.

[15] Koethe Y, Xu S, Velusamy G, et al. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance: a phantom study[J]. European Radiology, 2014, 24(3): 723-730.

[16] Yang C, Guo S, Bao X, et al. A vascular interventional surgical robot based on surgeon’s operating skills[J]. Medical & biological engineering & computing, 2019, 57: 1999-2010.

[17] Shi P, Guo S, Jin X, et al. A novel catheter interaction simulating method for virtual reality interventional training systems[J]. Medical & Biological Engineering & Computing, 2022: 1-13.

[18] Li L, Huang Z, Tian Y, et al. Design and Performance Evaluation of a Novel Vascular Interventional Surgery Robot[C]//2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2018: 176-181.

[19] Lin M A, Siu A F, Hwa B J, et al. HoloNeedle: Augmented-reality Guidance System for Needle Placement Investigating the Advantages of 3D Needle Shape Reconstruction[J]. IEEE Robotics & Automation Letters, 2018, 3(4): 4156-4162.

[20] 赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学精密工程, 2020, 28(1): 10.

[21] 张贯一. 锁骨下静脉穿刺机器人及穿刺力模型研究[D]. 哈尔滨理工大学, 2019.

[22] Van De Berg N J, Van Gerwen D J, Dankelman J, et al. Design choices in needle steering—A review[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(5): 2172-2183.

[23] Wang X, Meng M Q H. Robotics for natural orifice transluminal endoscopic surgery: a review[J]. Journal of Robotics, 2012.

[24] Webster III R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review[J]. The International Journal of Robotics Research, 2010, 29(13): 1661-1683.

[25] Xu K, Simaan N. Analytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals[J]. 2010.

[26] Mohan S, Trejos AL, Bassan H, et al. Computer integrated system for minimally invasive lung brachytherapy [J]. Studies in Health Technology & Informatics. 2008, 132(1): 296-301.

[27] Taylor R H, Kazanzides P, Fischer G S, et al. Medical Robotics and Computer-Integrated Interventional Medicine[J]. Advances in Computers. 2020: 617-672.

[28] Sun L W, Van Meer F, Bailly Y, et al. Design and Development of a Da Vinci Surgical System Simulator[C]. 2007 International Conference on Mechatronics and Automation. IEEE, 2007: 1050-1055.

[29] Lefranc M, Capel C, Pruvot A S, et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA@ stereotactic robot[J]. Stereotactic and Functional neurosurgery, 2014, 92(4): 242-250.

[30] 吴世强, 焦利武, 肖群根, 等. Remebot机器人辅助下立体定向活检术的临床应用[J].中国临床神经外科杂志, 2017, 22(11): 751-753.

[31] 赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述[J]. 光学精密工程, 2020, 28(01): 10-29.

[32] Hans S, Orlando F O M. Control of a flexible bevel-tipped needle using super-twisting controller based sliding mode observer[J]. ISA Transactions, 2021, 109: 186-198.

[33] 王汉萍, 张力, 梁智勇. 正确看待细胞病理学在肺癌诊断中的意义[J]. 中华病理学杂志, 2013, 42(011): 726-728.

[34] 翟伟明. 影像引导下计算机辅助微创介入手术导航关键技术的研究[D].清华大学, 2010.

[35] Morimoto M, Numata K, Kondo M, et al. C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging[J]. American Journal of Roentgenology, 2010, 194(5): 452-454.

[36] 蔡清源, 李凤霞, 陈锦珍, 等. 超声和CT引导经皮胸膜下肺病变穿刺活检的比较[J]. 中国超声医学杂志, 2021, 37(4): 397.

[37] Chen F, Liu J, Liao H. 3D catheter shape determination for endovascular navigation using a two-step particle filter and ultrasound scanning[J]. IEEE transactions on medical imaging, 2016, 36(3): 685-695.

[38] 王臣. 超声引导下经皮肺穿刺活检术在周围型肺占位性病变中的诊断价值[J]. 现代医学与健康研究电子, 2022, 6(08): 17-20.

[39] 公海童, 李晓光, 李荔. 超声造影在周围型肺腺癌与鳞癌鉴别诊断及穿刺活检中的价值研究[J]. 中国超声医学杂志, 2022, 38(02): 151-153.

[40] Guo J, Azimi E, Gonenc B, et al. MRI-guided needle steering for targets in motion based on fiber Bragg grating sensors[C]. 2016 IEEE SENSORS. IEEE, 2016: 1-3.

[41] Lin M A, Siu A F, Hwa B J, et al. HoloNeedle: Augmented-reality Guidance System for Needle Placement Investigating the Advantages of 3D Needle Shape Reconstruction[J]. IEEE Robotics & Automation Letters, 2018, 3(4): 4156-4162.

[42] Okamoto S, Matsui Y, Hiraki T, et al. Needle artifact characteristics and insertion accuracy using a 1.2 T open MRI scanner: A phantom study[J]. Diagnostic and Interventional Imaging, 2021, 102(6): 363-70.

[43]沈林勇, 陈建军, 钱晋武, 章亚男. 利用应变片实现曲线形状的实时检测[J]. 机器人, 2004, 26(3): 204-206.

[44] Lee S Y, Pakela J M, Na K, et al. Needle-compatible miniaturized optoelectronic sensor for pancreatic cancer detection[J]. Science Advances, 2020, 6(47): 1746.

[45] Khan F, Donder A, Galvan S, et al. Pose Measurement of Flexible Medical Instruments Using Fiber Bragg Gratings in Multi-Core Fiber[J]. IEEE Sensors Journal, 2020, 20(18): 10955-10962.

[46] Li T, King N K, Ren H. Disposable FBG-Based Tridirectional Force/Torque Sensor for Aspiration Instruments in Neurosurgery[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3236-3247.

[47] Lezcano D A, Iordachita I I, Kim J S. Trajectory Generation of FBG-Sensorized Needles for Insertions into Multi-Layer Tissue[C]. 2020 IEEE SENSORS. IEEE, 2020: 1-4.

[48] Chitalia Y, Deaton N J, Jeong S, et al. Towards FBG-Based Shape Sensing for Micro-scale and Meso-Scale Continuum Robots with Large Deflection[J]. IEEE robotics and automation letters, 2020, 5(2): 1712-1719.

[49] 郭雅美. 基于OFDR分布式光纤多维应变和形状传感研究[D]. 天津大学, 2019.

[50] Kaim S, Mokhov S, Zeldovich B Y, et al. Stretching and compressing of short laser pulses by chirped volume Bragg gratings: analytic and numerical modeling[J]. 2014, 53(5): 051509-051509.

[51] Mesa Y, Ricardo D, Russo N A, et al. Development and analysis of a model based on chirped fiber Bragg gratings employed for cracks characterization in materials[J]. 2018, 426: 401-409.

[52] Wei J, Wang S, Li J, et al, Novel Integrated Helical Design of Single Optic Fiber for Shape Sensing of Flexible Robot[J]. IEEE Sensors Journal, 2017, 17(20): 6627-6636..

[53] Xu R, Yurkewich A, Patel R V. Shape sensing for torsionally compliant concentric-tube robots[C]. Optical fibers and sensors for medical diagnostics and treatment applications XVI. SPIE, 2016, 9702: 163-170.

[54] Li M, Li G, Gonenc B, et al. Towards human-controlled, real-time shape sensing based flexible needle steering for MRI-guided percutaneous therapies[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2): 1762.

[55] Zhang L F , Li C L , Zhang X H , et al. A New Method For Fiber Bragg Grating Based Needle Shape Sensing Calibration[C]. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019: 1953-1958.

[56] Kim J S, Guo J, Chatrasingh M, et al.. Shape Determination During Needle Insertion With Curvature Measurements[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 201-208.

[57] Roesthuis R J, Janssen S, Misra S. On using an Array of Fiber Bragg Grating Sensors for Closed-Loop Control of Flexible Minimally Invasive Surgical Instruments [C]. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 2545-2551.

[58] Park Y L, Elayaperumal S, Daniel B, et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions On Mechatronics, 2010, 15(6): 906-915.

[59] Zhang W, Zhang M, Zhao Y, et al. Denoising of the fiber Bragg grating deformation spectrum signal using variational mode decomposition combined with wavelet thresholding[J]. Applied Sciences, 2019, 9(1): 180.

[60] 杜承金. 基于FBG的微创手术机器人力与形状感知系统研究[D]. 哈尔滨工业大学, 2020.

[61] Paloschi D, Bronnikov K A, Korganbayev S, et al. 3D shape sensing with multicore optical fibers: transformation matrices versus Frenet-Serret equations for real-time application[J]. IEEE Sensors Journal, 2020, 21(4): 4599-4609.

[62] Khan F, Donder A, Galvan S, et al. Pose measurement of flexible medical instruments using Fiber Bragg gratings in multi-core fiber[J]. IEEE sensors journal, 2020, 20(18): 10955-10962.

[63] 李勐. 穿刺手术机器人穿刺针—软组织交互机理, 规划控制及感知技术研究[D]. 北京理工大学, 2017.

[64] Roodsari S M, Huck-Horvath A, Freund S, et al. Using Supervised Deep-Learning to Model Edge-FBG Shape Sensors[C]. Optical Sensors. SPIE, 2021:79-88.

[65] 韩超, 胡宾鑫, 朱峰, 等. 基于小波降噪的光纤布拉格光栅波长高精度解调算法[J]. 激光与光电子学进展, 2022, 59(5): 0506004.

[66] Putzer P. Fiber-Optical Sensing for Telecommunication Satellites[D]. Technische Universität München, 2018.

[67] 付明明. 基于维纳滤波及BP神经网络的光学相关识别研究[D]. 哈尔滨工业大学, 2011.

[68] Naruei I, Keynia F, Sabbagh Molahosseini A. Hunter–prey optimization: Algorithm and applications[J]. Soft Computing, 2022, 26(3): 1279-1314.

中图分类号:

 TN253    

条码号:

 002000071216    

馆藏号:

 TD10058398    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式